Article (Scientific journals)
A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle
Ferrero, Mariano; Vignolo, Leandro D.; Vanrell, Sebastián R. et al.
2023In Engineering Applications of Artificial Intelligence, 121, p. 106016
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0952197623002002-main.pdf
Publisher postprint (986.31 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Acoustic monitoring; Data augmentation; Deep learning; Precision livestock farming; Ruminant foraging behaviour; Acoustic signals; Augmentation techniques; Ruminant foraging behavior; Artificial Intelligence; computer science
Abstract :
[en] Monitoring the foraging behaviour of ruminants is a key task to improve their productivity and welfare. During the last decades, several monitoring approaches have been proposed based on different types of sensors such as pressure-based, accelerometers and microphones. Among them, microphones have been one of the most promising options because acoustic signals provide comprehensive information about the foraging behaviour. In this work, a fully end-to-end deep architecture is proposed in order to perform both detection and classification tasks of masticatory events in one step, relying only on raw acoustic signals. The main benefit of this novel approach is the substitution of handcrafted preprocessing and feature extraction phases for a pure deep learning approach, which has shown better performance in related fields. Furthermore, different data augmentation techniques have been evaluated to address the data shortness for models development, typical in this field. The results demonstrate that the proposed architecture achieves a F1 score value of 79.82, which represents an increment close to 18% with respect to other state-of-the-art algorithms. Moreover, the proposed data augmentation techniques provide further performance enhancements, emerging as interesting alternatives in this field.
Disciplines :
Computer science
Animal production & animal husbandry
Author, co-author :
Ferrero, Mariano;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Vignolo, Leandro D. ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Vanrell, Sebastián R.;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Martinez-Rau, Luciano S. ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Chelotti, José ;  Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Galli, Julio R.;  Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR, Facultad de Ciencias Agrarias, UNR-CONICET, Parque J.F. Villarino, Zavalla, Argentina
Giovanini, Leonardo L.;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina
Rufiner, H. Leonardo ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina ; Laboratorio de Cibernética, Facultad de Ingeniería, Univ. Nacional de Entre Ríos, Oro Verde, Argentina
Language :
English
Title :
A full end-to-end deep approach for detecting and classifying jaw movements from acoustic signals in grazing cattle
Publication date :
2023
Journal title :
Engineering Applications of Artificial Intelligence
ISSN :
0952-1976
Publisher :
Elsevier Ltd
Volume :
121
Pages :
106016
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ASaCTeI - Agencia Santafesina de Ciencia, Tecnología e Innovación
Nvidia
UNR - Universidad Nacional de Rosario
CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas
UNL - Universidad Nacional del Litoral
Funding text :
This work has been funded by Universidad Nacional del Litoral, CAID, Argentina 50620190100080LI and 50620190100151LI , Universidad Nacional de Rosario, Argentina , projects 2013-AGR216, 2016-AGR266 and 80020180300053UR, Agencia Santafesina de Ciencia, Argentina , Tecnología e Innovación (ASACTEI), Argentina , project IO–2018—00082, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina , project 2017-PUE sinc(i). Authors would like to thank the dedication and perceptive help by Campo Experimental J. Villarino Dairy Farm staff for their assistance and support during the completion of this study. Authors also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.
Available on ORBi :
since 21 August 2024

Statistics


Number of views
7 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
5
OpenCitations
 
0
OpenAlex citations
 
9

Bibliography


Similar publications



Contact ORBi