Diffusion tensor imaging; Functional MRI; Magnetic resonance imaging; Magnetic resonance spectroscopy; Positron emission tomography; Voxel-based morphometry; Diffusion Tensor Imaging; Humans; Magnetic Resonance Imaging; Neuroimaging; Alzheimer Disease/diagnostic imaging; Cognitive Dysfunction/diagnostic imaging; Alzheimer Disease; Cognitive Dysfunction; Radiology, Nuclear Medicine and Imaging; Neurology (clinical)
Abstract :
[en] Alzheimer's disease (AD) is a heterogeneous progressive neurocognitive disorder. Although different neuroimaging modalities have been used for the identification of early diagnostic and prognostic factors of AD, there is no consolidated view of the findings from the literature. Here, we aim to provide a comprehensive account of different neural correlates of cognitive dysfunction via magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) (resting-state and task-related), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) modalities across the cognitive groups i.e., normal cognition, mild cognitive impairment (MCI), and AD. A total of 46 meta-analyses met the inclusion criteria, including relevance to MCI, and/or AD along with neuroimaging modality used with quantitative and/or functional data. Volumetric MRI identified early anatomical changes involving transentorhinal cortex, Brodmann area 28, followed by the hippocampus, which differentiated early AD from healthy subjects. A consistent pattern of disruption in the bilateral precuneus along with the medial temporal lobe and limbic system was observed in fMRI, while DTI substantiated the observed atrophic alterations in the corpus callosum among MCI and AD cases. Default mode network hypoconnectivity in bilateral precuneus (PCu)/posterior cingulate cortices (PCC) and hypometabolism/hypoperfusion in inferior parietal lobules and left PCC/PCu was evident. Molecular imaging revealed variable metabolite concentrations in PCC. In conclusion, the use of different neuroimaging modalities together may lead to identification of an early diagnostic and/or prognostic biomarker for AD.
Precision for document type :
Review article
Disciplines :
Neurology
Author, co-author :
Talwar, Puneet ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India. talwar.puneet@gmail.com
Kushwaha, Suman ✱; Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India. sumankushwaha@gmail.com
Chaturvedi, Monali; Department of Neuroradiology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India
Mahajan, Vidur; Centre for Advanced Research in Imaging, Neuroscience and Genomics (CARING), Mahajan Imaging, New Delhi, India
✱ These authors have contributed equally to this work.
Language :
English
Title :
Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer's Disease.
Publication date :
December 2021
Journal title :
Clinical Neuroradiology
ISSN :
1869-1439
eISSN :
1869-1447
Publisher :
Springer Science and Business Media Deutschland GmbH, Germany
We thank the Director, Nimesh G Desai, Institute of Human Behaviour and Allied Sciences (IHBAS), for motivation and unconditional support. PT acknowledges DST, Government of India for providing fellowship (CSRI-PDF). We thank the anonymous reviewers for their helpful suggestions for improving the manuscript.We thank the Director, Nimesh?G Desai, Institute of Human Behaviour and Allied Sciences (IHBAS), for motivation and unconditional support. PT acknowledges DST, Government of India for providing fellowship (CSRI-PDF). We thank the anonymous reviewers for their helpful suggestions for improving the manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Patterson C. World Alzheimer report 2018—the state of the art of dementia research: new frontiers. London, UK: Alzheimer’s Disease International (ADI); 2018.
WHO. Dementia. 2019. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 8 Aug 2019.
Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6. DOI: 10.1111/j.1750-3639.1991.tb00661.x
Petersen RC. Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia. 2000;15:93–101.
Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–6. DOI: 10.1111/j.1365-2796.2004.01380.xJIM1380
Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol. 1992;159:591–9. DOI: 10.2214/ajr.159.3.1503032
Yin RH, Tan L, Liu Y, Wang WY, Wang HF, Jiang T, Radua J, Zhang Y, Gao J, Canu E, Migliaccio R, Filippi M, Gorno-Tempini ML, Yu JT. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Alzheimer’s Disease. J Alzheimers Dis. 2015;47:495–507. DOI: 10.3233/JAD-150139
Fan J, Donkin J, Wellington C. Greasing the wheels of Abeta clearance in Alzheimer’s disease: the role of lipids and apolipoprotein E. Biofactors. 2009;35:239–48. DOI: 10.1002/biof.37
Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, Evans AC. Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol Aging. 2008;29:23–30. DOI: 10.1016/j.neurobiolaging.2006.09.013
Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr. Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage. 2008;39:1186–97. DOI: 10.1016/j.neuroimage.2007.09.073
Julkunen V, Niskanen E, Koikkalainen J, Herukka SK, Pihlajamäki M, Hallikainen M, Kivipelto M, Muehlboeck S, Evans AC, Vanninen R, Hilkka Soininen. Differences in cortical thickness in healthy controls, subjects with mild cognitive impairment, and Alzheimer’s disease patients: a longitudinal study. J Alzheimers Dis. 2010;21:1141–51. DOI: 10.3233/JAD-2010-100114
Koch K, Myers NE, Göttler J, Pasquini L, Grimmer T, Förster S, Manoliu A, Neitzel J, Kurz A, Förstl H, Riedl V, Wohlschläger AM, Drzezga A, Sorg C. Disrupted Intrinsic Networks Link Amyloid-β Pathology and Impaired Cognition in Prodromal Alzheimer’s Disease. Cereb Cortex. 2015;25:4678–88. DOI: 10.1093/cercor/bhu151
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–8. DOI: 10.1073/pnas.0504136102
van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30:3127–41. DOI: 10.1002/hbm.20737
Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR Imaging: New Frontier in Alzheimer’s Disease and Other Dementias. Front Mol Neurosci. 2017;10:343. DOI: 10.3389/fnmol.2017.00343
Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol. 2014;35:2030–8. DOI: 10.3174/ajnr.A3695
Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr, Dickson DW, Kantarci K. Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci. 2014;34:16247–55. DOI: 10.1523/JNEUROSCI.2027-14.2014
Giorgio A, De Stefano N. Clinical use of brain volumetry. J Magn Reson Imaging. 2013;37:1–14. DOI: 10.1002/jmri.23671
Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47:1196–206. DOI: 10.1016/j.neuroimage.2009.05.037
Rathakrishnan BG, Doraiswamy PM, Petrella JR. Science to practice: translating automated brain MRI volumetry in Alzheimer’s disease from research to routine diagnostic use in the work-up of dementia. Front Neurol. 2014;4:216. DOI: 10.3389/fneur.2013.00216
Manuello J, Nani A, Premi E, Borroni B, Costa T, Tatu K, Liloia D, Duca S, Cauda F. The Pathoconnectivity Profile of Alzheimer’s Disease: A Morphometric Coalteration Network Analysis. Front Neurol. 2018;8:739. DOI: 10.3389/fneur.2017.00739
Zakzanis KK, Graham SJ, Campbell Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev. 2003;13:1–18. DOI: 10.1023/A:1022318921994
Yang J, Pan P, Song W, Huang R, Li J, Chen K, Gong Q, Zhong J, Shi H, Shang H. Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. J Neurol Sci. 2012;316:21–9. DOI: 10.1016/j.jns.2012.02.010
Gu L, Zhang Z. Exploring Structural and Functional Brain Changes in Mild Cognitive Impairment: A Whole Brain ALE Meta-Analysis for Multimodal MRI. ACS Chem Neurosci. 2019;10:2823–9. DOI: 10.1021/acschemneuro.9b00045
Fathy YY, Hoogers SE, Berendse HW, van der Werf YD, Visser PJ, de Jong FJ, van de Berg WDJ. Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis. Brain Imaging Behav. 2020;14:2799–816. DOI: 10.1007/s11682-019-00099-3
Schroeter ML, Neumann J. Combined Imaging Markers Dissociate Alzheimer’s Disease and Frontotemporal Lobar Degeneration - An ALE Meta-Analysis. Front Aging Neurosci. 2011;3:10. DOI: 10.3389/fnagi.2011.00010
Chapleau M, Aldebert J, Montembeault M, Brambati SM. Atrophy in Alzheimer’s Disease and Semantic Dementia: An ALE Meta-Analysis of Voxel-Based Morphometry Studies. J Alzheimers Dis. 2016;54:941–55. DOI: 10.3233/JAD-160382
Wang WY, Yu JT, Liu Y, Yin RH, Wang HF, Wang J, Tan L, Radua J, Tan L. Voxel-based meta-analysis of grey matter changes in Alzheimer’s disease. Transl Neurodegener. 2015;4:6. DOI: 10.1186/s40035-015-0027-z
Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, Thompson P, Fox NC. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging. 2009;30:1711–23. DOI: 10.1016/j.neurobiolaging.2008.01.010
Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement (Amst). 2015;1:487–504. DOI: 10.1016/j.dadm.2015.11.002
Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum Brain Mapp. 2017;38:5890–904. DOI: 10.1002/hbm.23772
Li J, Pan P, Huang R, Shang H. A meta-analysis of voxel-based morphometry studies of white matter volume alterations in Alzheimer’s disease. Neurosci Biobehav Rev. 2012;36:757–63. DOI: 10.1016/j.neubiorev.2011.12.001
Clerx L, Visser PJ, Verhey F, Aalten P. New MRI markers for Alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. J Alzheimers Dis. 2012;29:405–29. DOI: 10.3233/JAD-2011-110797
Gellersen HM, Guo CC, O’Callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88:780–8. DOI: 10.1136/jnnp-2017-315607
Schulte T, Müller-Oehring EM. Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev. 2010;20:174–90. DOI: 10.1007/s11065-010-9130-1
Wang XD, Ren M, Zhu MW, Gao WP, Zhang J, Shen H, Lin ZG, Feng HL, Zhao CJ, Gao K. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer’s dementia or mild cognitive impairment: a meta-analysis of the region of interest structural imaging studies. J Psychiatr Res. 2015;63:10–9. DOI: 10.1016/j.jpsychires.2015.02.005
Di Paola M, Luders E, Di Iulio F, Cherubini A, Passafiume D, Thompson PM, Caltagirone C, Toga AW, Spalletta G. Callosal atrophy in mild cognitive impairment and Alzheimer’s disease: different effects in different stages. Neuroimage. 2010;49:141–9. DOI: 10.1016/j.neuroimage.2009.07.050
Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32:1733–41. DOI: 10.1016/j.neurobiolaging.2009.11.008
Seo EH, Park WY, Choo IH. Structural MRI and Amyloid PET Imaging for Prediction of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis. Psychiatry Investig. 2017;14:205–15. DOI: 10.4306/pi.2017.14.2.205
Taylor WD, Hsu E, Krishnan KR, MacFall JR. Diffusion tensor imaging: background, potential, and utility in psychiatric research. Biol Psychiatry. 2004;55:201–7. DOI: 10.1016/j.biopsych.2003.07.001
Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31. DOI: 10.3389/fnins.2013.00031
Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29. DOI: 10.1016/j.nurt.2007.05.011
Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2011;32:2322.e5-18. DOI: 10.1016/j.neurobiolaging.2010.05.019
Yu J, Lam CLM, Lee TMC. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci Biobehav Rev. 2017;83:405–16. DOI: 10.1016/j.neubiorev.2017.10.026
Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65. DOI: 10.1152/jn.00338.2011
Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16:1484–92. DOI: 10.1162/0898929042568532
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. DOI: 10.1196/annals.1440.011
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45. DOI: 10.1152/jn.00339.2011
Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108:2242–63. DOI: 10.1152/jn.00270.2012
Pan P, Zhu L, Yu T, Shi H, Zhang B, Qin R, Zhu X, Qian L, Zhao H, Zhou H, Xu Y. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Res Rev. 2017;35:12–21. DOI: 10.1016/j.arr.2016.12.001
Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD. A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. 2011;5:2. DOI: 10.3389/fnsys.2011.00002
Li HJ, Hou XH, Liu HH, Yue CL, He Y, Zuo XN. Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum Brain Mapp. 2015;36:1217–32. DOI: 10.1002/hbm.22689
Eyler LT, Elman JA, Hatton SN, Gough S, Mischel AK, Hagler DJ, Franz CE, Docherty A, Fennema-Notestine C, Gillespie N, Gustavson D, Lyons MJ, Neale MC, Panizzon MS, Dale AM, Kremen WS. Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2019;70:107–20. DOI: 10.3233/JAD-180847
Wang C, Pan Y, Liu Y, Xu K, Hao L, Huang F, Ke J, Sheng L, Ma H, Guo W. Aberrant default mode network in amnestic mild cognitive impairment: a meta-analysis of independent component analysis studies. Neurol Sci. 2018;39:919–31. DOI: 10.1007/s10072-018-3306-5
Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;8:73–85. DOI: 10.1016/j.dadm.2017.03.007
Lau WK, Leung MK, Lee TM, Law AC. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis. Transl Psychiatry. 2016;6:e790. DOI: 10.1038/tp.2016.55
Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. Neuroimage. 2009;45:181–90. DOI: 10.1016/j.neuroimage.2008.11.024
Nellessen N, Rottschy C, Eickhoff SB, Ketteler ST, Kuhn H, Shah NJ, Schulz JB, Reske M, Reetz K. Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer’s disease: a coordinate-based meta-analysis. Brain Struct Funct. 2015;220:1555–71. DOI: 10.1007/s00429-014-0744-6
Terry DP, Sabatinelli D, Puente AN, Lazar NA, Miller LS. A Meta-Analysis of fMRI Activation Differences during Episodic Memory in Alzheimer’s Disease and Mild Cognitive Impairment. J Neuroimaging. 2015;25:849–60. DOI: 10.1111/jon.12266
Pievani M, Pini L, Ferrari C, Pizzini FB, Boscolo Galazzo I, Cobelli C, Cotelli M, Manenti R, Frisoni GB. Coordinate-Based Meta-Analysis of the Default Mode and Salience Network for Target Identification in Non-Invasive Brain Stimulation of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia Networks. J Alzheimers Dis. 2017;57:825–43. DOI: 10.3233/JAD-161105
Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M; Alzheimer’s Disease Neuroimaging Initiative. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Hum Brain Mapp. 2019;40:5424–42. DOI: 10.1002/hbm.24782
Matsuda H, Shigemoto Y, Sato N. Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET. Jpn J Radiol. 2019;37:735–49. DOI: 10.1007/s11604-019-00867-7
Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med. 2015;45:224–33. DOI: 10.1053/j.semnuclmed.2014.12.003
Ma HR, Sheng LQ, Pan PL, Wang GD, Luo R, Shi HC, Dai ZY, Zhong JG. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: a meta-analysis. Transl Neurodegener. 2018;7:9. DOI: 10.1186/s40035-018-0114-z
Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol. 2009;30:404–10. DOI: 10.3174/ajnr.A1357
Choe YS, Lee KH. PET Radioligands for Imaging of Tau Pathology: Current Status. Nucl Med Mol Imaging. 2015;49:251–7. DOI: 10.1007/s13139-015-0374-9
Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:374–85. DOI: 10.1007/s00259-015-3228-x
Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer’s disease. Alzheimers Dement (Amst). 2015;1:5–13. DOI: 10.1016/j.dadm.2014.11.004
Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, Scheltens P, Visser PJ; Amyloid PET Study Group, Verfaillie SC, Zwan MD, Adriaanse SM, Lammertsma AA, Barkhof F, Jagust WJ, Miller BL, Rosen HJ, Landau SM, Villemagne VL, Rowe CC, Lee DY, Na DL, Seo SW, Sarazin M, Roe CM, Sabri O, Barthel H, Koglin N, Hodges J, Leyton CE, Vandenberghe R, van Laere K, Drzezga A, Forster S, Grimmer T, Sánchez-Juan P, Carril JM, Mok V, Camus V, Klunk WE, Cohen AD, Meyer PT, Hellwig S, Newberg A, Frederiksen KS, Fleisher AS, Mintun MA, Wolk DA, Nordberg A, Rinne JO, Chételat G, Lleo A, Blesa R, Fortea J, Madsen K, Rodrigue KM, Brooks DJ. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–49. DOI: 10.1001/jama.2015.4669
Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O’Keefe G, Price R, Raniga P, Robins P, Acosta O, Lenzo N, Szoeke C, Salvado O, Head R, Martins R, Masters CL, Ames D, Villemagne VL. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31:1275–83. DOI: 10.1016/j.neurobiolaging.2010.04.007
Chen X, Li M, Wang S, Zhu H, Xiong Y, Liu X. Pittsburgh compound B retention and progression of cognitive status--a meta-analysis. Eur J Neurol. 2014;21:1060–7. DOI: 10.1111/ene.12398
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Res Rev. 2019;50:1–8. DOI: 10.1016/j.arr.2019.01.002
Talwar P, Kushwaha S, Gupta R, Agarwal R. Systemic Immune Dyshomeostasis Model and Pathways in Alzheimer’s Disease. Front Aging Neurosci. 2019;11:290. DOI: 10.3389/fnagi.2019.00290
Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37:2571–86. DOI: 10.1016/j.neubiorev.2013.08.004
Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB. Inhibition of N‑acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport. 1996;7:1397–400. DOI: 10.1097/00001756-199605310-00014
Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol. 1995;46:531–40. DOI: 10.1016/0301-0082(95)00014-m
Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, Josephs KA, Boeve BF, Petersen RC, Jack CR Jr. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology. 2008;248:210–20. DOI: 10.1148/radiol.2481071590
Wang H, Tan L, Wang HF, Liu Y, Yin RH, Wang WY, Chang XL, Jiang T, Yu JT. Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. J Alzheimers Dis. 2015;46:1049–70. DOI: 10.3233/JAD-143225
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8. Erratum in: Arch Neurol 1999;56:760. DOI: 10.1001/archneur.56.3.303
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92. DOI: 10.1001/archneur.58.12.1985
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94. DOI: 10.1111/j.1365-2796.2004.01388.x
Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62:1160–3; discussion 1167. DOI: 10.1001/archneur.62.7.1160
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9. DOI: 10.1016/j.jalz.2011.03.008
Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, Walter S, Trojanowski JQ, Shaw LM, Beckett LA, Jack CR Jr, Jagust W, Toga AW, Saykin AJ, Morris JC, Green RC, Weiner MW; Alzheimer’s Disease Neuroimaging Initiative. Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement. 2010;6:239–46. DOI: 10.1016/j.jalz.2010.03.006
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44. DOI: 10.1212/WNL.34.7.939
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed. 1987. pp. 971–9.
World Health Organization. ICD-10: the ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. ICD-10: the ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. 1993. p. 248.
Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9 Suppl 1:173–6; discussion 177-8. DOI: 10.1017/s1041610297004870
Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET. Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:1147–55. DOI: 10.1097/00005072-199911000-00004
Schmand B, Huizenga HM, van Gool WA. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychol Med. 2010;40:135–45. DOI: 10.1017/S0033291709991516
Boccia M, Acierno M, Piccardi L. Neuroanatomy of Alzheimer’s Disease and Late-Life Depression: A Coordinate-Based Meta-Analysis of MRI Studies. J Alzheimers Dis. 2015;46:963–70. DOI: 10.3233/JAD-142955
Liu Y, Yu JT, Wang HF, Han PR, Tan CC, Wang C, Meng XF, Risacher SL, Saykin AJ, Tan L. APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86:127–34. DOI: 10.1136/jnnp-2014-307719