Keywords :
Ellagic acid, PEG 8000, ternary solid dispersions, hot melt extrusion, plasticizer, and dissolution
Abstract :
[en] Solid dispersion formation by hot melt extrusion (HME) is a widely used formulation strategy to improve the solubility and bioavailability of poorly water-soluble drugs. Despite this, they are limited by various factors such as drug-excipient miscibility, poor stability, limited drug loading and extrudability of physical drug-excipient mixtures. In this work, polyethylene glycol 8000 (PEG 8000) was used as a plasticizer for the manufacture of
ellagic acid solid dispersions (EASD) with high drug loading. Indeed, ellagic acid (EA) is a polyphenolic active compound with antimalarial and other promising therapeutic activities. However, its low solubility and low permeability limit its therapeutic use. Solid dispersions formation may overcome this challenge, but its high melting point negatively influences the extrudability of its binary physical mixtures with a high drug loading rate,
hence the need to use a plasticizer. Thus, five formulations consisting of EA, Eudragit® EPO and PEG 8000 in the ratio of 15:75:10 (F1), 20:70:10 (F2), 25:65:10 (F3), 15:80:5 (F4) and 20:85:5 (F5) % w/w, respectively, have been extruded, four of which were successful. The extrudates were evaluated by X-ray powder diffraction, FTIR spectroscopy and in vitro dissolution tests. Based on the results of these tests, the F5 formulation was identified as
the most promising. Indeed, after 15 min of dissolution test, the dissolution rate of ellagic acid from the formulations was 62.67±3.10%, 58.74±7.23 %, 88.75±3.02% and 83.47±4.40% respectively for formulation F1, F2, F4 and F5. Moreover, the results of the FTIR spectroscopy analyses showed stronger interactions between the different constituents in the F4 and F5 formulations compared to the F1 and F2 formulations. Extruded materials
of the F5 formulation, characterized by solid state nuclear magnetic resonance (ssNMR) spectroscopy and subjected to stability studies, showed good physical stability for twelve months under real-time stability study conditions and for six months under accelerated conditions.