Statistical uncertainty; Turbulent statistics; Time series; DNS; LES; Unbiased estimators
Abstract :
[en] In the context of fundamental flow studies, experimental databases are expected to provide uncertainty margins on the measured quantities. With the rapid increase in available computational power and the development of high-resolution fluid simulation techniques, Direct Numerical Simulation and Large Eddy Simulation are increasingly used in synergy with experiments to provide a complementary view. Moreover, they can access statistical moments of the flow variables for the development, calibration, and validation of turbulence models. In this context, the quantification of statistical errors is also essential for numerical studies. Reliable estimation of these errors poses two challenges. The first challenge is the very large amount of data: the simulation can provide a large number of quantities of interest (typically about 180 quantities) over the entire domain (typically 100 million to 10 billion of degrees of freedom per equation). Ideally, one would like to quantify the error for each quantity at any point in the flow field. However, storing a long-term sequence of signals from many quantities over the entire domain for a posteriori evaluation is prohibitively expensive. The second challenge is the short time step required to resolve turbulent flows with DNS and LES. As a direct consequence, consecutive samples within the time series are highly correlated. To overcome both challenges, a novel economical coprocessing approach to estimate statistical errors is proposed, based on a recursive formula and the rolling storage of short-time signals.
Boxho, Margaux ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Cenaero, Charleroi, Belgium
Toulorge, Thomas; Cenaero, Charleroi, Belgium
Rasquin, Michel; Cenaero, Charleroi, Belgium
Dergham, Grégory; Safran Tech, Châteaufort, Magny-les-Hameaux, France
Hillewaert, Koen ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Design of Turbomachines ; Cenaero, Charleroi, Belgium
Language :
English
Title :
Low Cost Recurrent and Asymptotically Unbiased Estimators of Statistical Uncertainty on Averaged Fields for DNS and LES
Publication date :
29 May 2024
Journal title :
Flow, Turbulence and Combustion
ISSN :
1386-6184
eISSN :
1573-1987
Publisher :
Springer Nature
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Safran - Safran Tech
Funding text :
Safran Tech provided funding for the doctoral research of M. Boxho; Computational resources were made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the Grant Agreement No. 1117545.
Alimohammadi, S., He, D.: Multi-stage algorithm for uncertainty analysis of solar power forecasting. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). https://doi.org/10.1109/PESGM.2016.7741199
T.G. Andersen T. Bollerslev F.X. Diebold et al. The distribution of realized exchange rate volatility J. Am. Stat. Assoc. 2001 96 453 42 55 1952727 10.1198/016214501750332965
M. Bernardes N. Dias The alignment of the mean wind and stress vectors in the unstable surface layer Bound.-Layer Meteorol. 2010 134 41 59 10.1007/s10546-009-9429-8
Beyhaghi, P., Alimohammadi, S., Bewley, T.: Uncertainty quantification of the time averaging of a statistics computed from numerical simulation of turbulent flow (2018). arXiv:1802.01056 [physics, stat]
Boufidi, E.: The characterization of turbulence in high speed compresisble and complex industrial flows. Ph.D thesis, Université catholique de Louvain (2021)
E. Boufidi S. Lavagnoli F. Fontaneto A probabilistic uncertainty estimation method for turbulence parameters measured by hot-wire anemometry in short-duration wind tunnels J. Eng. Gas Turbines Power 2020 142 10.1115/1.4044780
G. Box G. Jenkins G. Reinsel et al. Time Series Analysis: Forecasting and Control 2015 5 Prentice-Hall Wiley
G. Box G. Jenkins G. Reinsel et al. Time Series Analysis: Forecasting and Control 2016 5 Hoboken Wiley
M. Boxho M. Rasquin T. Toulorge et al. Analysis of space-time correlations to support the development of wall-modeled LES Flow Turbul. Combust. 2022 109 4 1081 1109 10.1007/s10494-022-00365-3
P.M.T. Broersen Automatic spectral analysis with time series models IEEE Trans. Instrum. Meas. 2002 51 2 211 216 10.1109/19.997814
P.M.T. Broersen Automatic autocorrelation and spectral analysis Springer 2006 10.1007/1-84628-329-9
C. Carton de Wiart K. Hillewaert L. Bricteux et al. Implicit les of free and wall bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method Int. J. Numer. Methods Fluids 2014 78 6 335 354 3350177 10.1002/fld.4021
R. Conway Some tactical problems in digital simulation Manag. Sci. 1963 10 1 47 61 2450269 10.1287/mnsc.10.1.47
R. Conway B. Johnson W. Maxwell Some problems of digital systems simulation Manag. Sci. 1959 6 1 92 110 10.1287/mnsc.6.1.92
D. Donzis P. Yeung K.R. Sreenivasan Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations Phys. Fluids 2008 20 10.1063/1.2907227
K. Duraisamy G. Iaccarino H. Xiao Turbulence modeling in the age of data Annu. Rev. Fluid Mech. 2019 51 1 357 377 3965623 10.1146/annurev-fluid-010518-040547 arxiv:1804.00183
A. Dürre R. Fried T. Liboschik Robust estimation of (partial) autocorrelation Wiley Interdiscipl. Rev.: Comput. Stat. 2015 7 3 205 222 3349300 10.1002/wics.1351
B. Efron Bootstrap methods: another look at the jackknife Ann Stat. 1979 7 1 1 26 515681 10.1214/aos/1176344552
Favier, D.: The role of wind tunnel experiments in CFD validation. In: Encyclopedia of Aerospace Engineering. Wiley (2010). https://doi.org/10.1002/9780470686652.eae034
E. Fonseca V. Rangel B. Brener Pre-processing DNS data to improve statistical convergence and accuracy of mean velocity fields in invariant data-driven turbulence models Theor. Comput. Fluid Dyn. 2022 36 435 463 4443134 10.1007/s00162-022-00603-4
T. Hayashi N. Yoshida On covariance estimation of non-synchronously observed diffusion processes Bernoulli 2005 11 2 359 379 2132731 10.3150/bj/1116340299
Hillewaert, K.: Development of the Discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. Ph.D thesis, Université catholique de Louvain (2013)
S. Hoyas J. Jiménez Reynolds number effects on the Reynolds-stress budgets in turbulent channels Phys. Fluids 2008 20 10 10.1063/1.3005862
Kunsch, H.R.: The jackknife and the bootstrap for general stationary observations. Ann Stat. 17(3), 1217–1241 (1989). https://www.jstor.org/stable/2241719
Y. Kuramoto Diffusion-induced chaos in reaction systems Prog. Theor. Phys. Suppl. 1978 64 346 367 10.1143/PTPS.64.346
A. Law W. Kelton Simulation Modeling and Analysis 2000 3 Boston McGraw-Hill
Liao, L., Park, C., Hannig, J., et al.: Autocovariance function estimation via penalized regression. J. Comput. Graph. Stat. 25 (4):1041–1056 (2016). https://doi.org/http://www.jstor.org/stable/44861908. Publisher: [American Statistical Association, Taylor & Francis, Ltd., Institute of Mathematical Statistics, Interface Foundation of America]
Lumley, J., Panofsky, H.: The Structure of Atmospheric Turbulence. Interscience (1964)
Y. Ma M.G. Genton Highly robust estimation of the autocovariance function J. Time Ser. Anal. 2000 21 6 663 684 1801704 10.1111/1467-9892.00203
Meketon, M., Schmeiser, B.: Overlapping batch means: something for nothing? In: WSC’84 Proceedings of the 16th Conference on Winter Simulation, vol. 27, pp. 226–230 (1984)
T.A. Oliver N. Malaya R. Ulerich et al. Estimating uncertainties in statistics computed from direct numerical simulation Phys. Fluids 2014 26 3 10.1063/1.4866813
D.N. Politis H. White Automatic block-length selection for the dependent bootstrap Economet. Rev. 2004 23 1 53 70 2041534 10.1081/ETC-120028836
S.B. Pope Turbulent Flows 2000 Cambridge Cambridge University Press 10.1017/CBO9780511840531
Rapp, C., Breuer, M., Manhart, M., et al.: Underlying flow regime 3-30: 2D periodic hill flow. In: ERCOFTAC KB Wiki (2010). https://kbwiki.ercoftac.org/w/index.php/Abstr:2D_Periodic_Hill_Flow
Rezaeiravesh, S., Gscheidle, C., Peplinski, A., et al.: In-situ estimation of time-averaging uncertainties in turbulent flow simulations (2023). arXiv:2310.08676
S. Russo P. Luchini A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages J. Comput. Phys. 2017 347 328 340 3682072 10.1016/j.jcp.2017.07.005
B. Schmeiser Batch size effects in the analysis of simulation output Oper. Res. 1982 30 3 556 568 659055 10.1287/opre.30.3.556
K.E. Trenberth Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations Mon. Weather Rev. 1984 112 12 2359 2368 10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2
T.J. Vogelsang J. Yang Exactly/nearly unbiased estimation of autocovariances of a univariate time series with unknown mean J. Time Ser. Anal. 2016 37 6 723 740 3564305 10.1111/jtsa.12184
Wei, W.W.S.: Time Series Analysis: Univariate and Multivariate Methods, 2nd edn. Pearson Addison Wesley (2006)
B.P. Welford Note on a method for calculating corrected sums of squares and products Technometrics 1962 4 3 419 420 143307 10.1080/00401706.1962.10490022