2.4-Myr eccentricity node; Monte Carlo simulation; Silurian; wavelet; WaverideR package; δ13C excursion; Earth and Planetary Sciences (all)
Abstract :
[en] The type-Silurian Cellon section in the Carnic Alps in Austria underpins much of the current Silurian conodont zonations, forming the basis for the Silurian timescale. However, the Silurian record of the Cellon section lacks radiometric and astrochronological age constraints, making it difficult to gain insights into the processes pacing Silurian (anoxic) events. To attain age constraints and investigate the pacing Silurian (anoxic) events by astronomical cycles, a cyclostratigraphic study was conducted on high-resolution pXRF (CaO, Al2O3, and Fe2O3) and induration records spanning the Ludlow and Pridoli parts of the Cellon section. Astronomical cycles ranging from precession to the 405-kyr eccentricity cycle were first recognised visually in the field and in proxy records. The visual detection of astronomical cycles served as an input for the WaverideR R package, enabling the tracking of the 405-kyr eccentricity period in each proxy’s continous wavelet transform scalograms. These tracked period curves were combined with external age controls through multiple Monte Carlo simulations, generating an (absolute) age model. This age model is used to assign ages and durations and their respective uncertainties to a hiatus in the Ludfordian, conodont zones, lithological units, geochronological units and events, yielding new ages for Silurian stage boundaries (e.g., Gorstian-Ludfordian boundary at 425.92 ± 0.65 Ma, the Ludfordian-Pridoli boundary at 423.03 ± 0.53 Ma, the Silurian-Devonian boundary at 418.86 ± 1.02 Ma), and new durations for the Ludfordian at 2.89 ± 0.35 Myr and Pridoli at 4.24 ± 0.46 Myr. Furthermore, the imprint of astronomical cycles in the Cellon section itself indicates that the Linde, Klev and Silurian-Devonian boundary events all occur after a 2.4-Myr eccentricity node, indicating pacing by astronomical forcing, similar to other Devonian and Cretaceous anoxic events. The Lau event, however, does not appear to coincide with a 2.4-Myr eccentricity node.
Corradini, Carlo; Dipartimento di Matematica e Geoscienze, Università di Trieste, Trieste, Italy
Pondrelli, Monica; International Research School of Planetary Sciences, Pescara, Italy ; Dipartimento di Ingegneria e Geologia, Università d’Annunzio, Pescara, Italy
Pas, Damien ; Université de Liège - ULiège > Département de géologie > Pétrologie sédimentaire ; Institute of Earth Sciences (ISTE), University of Lausanne, Lausanne, Switzerland
MA is financially supported by the FNRS-PDR T.0051.19 grant. A-CD acknowledges the \u201CConseil Universitaire de la recherche et la valorisation,\u201D as well as \u201CSubside F\u00E9d\u00E9ral de la recherche\u201D for financial support for the acquisition of the Portable XRF Bruker Tracer 5G, as well as National Science Foundation grant (J.0037.21, T.0037.22, and R.5541-J-F-B). CC acknowledges the Italian Ministry of University and Research Project 2022ZH5RWP, PRIN 2022 \u201CDEEP PAST.\u201D DP acknowledges the Swiss National Science Foundation grant PZ00P2-193520.The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. The FNRS-PDR T.0051.19 grant supported MA. A-CD was supported by the \u201CConseil Universitaire de la recherche et la valorisation,\u201D as well as \u201CSubside F\u00E9d\u00E9ral de la recherche\u201D for financial support for the acquisition of the Portable XRF Bruker Tracer 5G, as well as National Science Foundation grant (J.0037.21, T.0037.22, and R.5541-J-F-B). CC was supported by the Italian Ministry of University and Research Project 2022ZH5RWP, PRIN 2022 \u201CDEEP PAST\u201D. The Swiss National Science Foundation supported DP with grant PZ00P2-193520.
Arts M. (2023). WaverideR: extracting signals from wavelet spectra. Available at: https://cran.r-project.org/package=WaverideR.
Batenburg S. J. De Vleeschouwer D. Sprovieri M. Hilgen F. J. Gale A. S. Singer B. S. et al. (2016). Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Clim. Past 12, 1995–2009. 10.5194/cp-12-1995-2016
Bennett K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16, 11–21. 10.1017/S0094837300009684
Brett C. E. Ferretti A. Histon K. Schönlaub H. P. (2009). Silurian sequence stratigraphy of the carnic Alps, Austria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 1–28. 10.1016/j.palaeo.2009.04.004
Brett C. E. McLaughlin P. I. Histon K. Schindler E. Ferretti A. (2012). Time-specific aspects of facies: state of the art, examples, and possible causes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367–368, 6–18. 10.1016/j.palaeo.2012.10.009
Calner M. (2004). The Silurian of Gotland–Part I: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development: Erlanger geologischen Abhandlungen. Available at: http://www.gzn.uni-erlangen.de/fileadmin/images/pal/pdf/Calner_et_al_04a_02.pdf.
Cooper R. A. Sadler P. M. Munnecke A. Crampton J. S. (2014). Graptoloid evolutionary rates track ordovician-Silurian global climate change. Geol. Mag. 151, 349–364. 10.1017/S0016756813000198
Corradini C. Corriga M. G. Ferretti A. Schönlaub H. P. (2017). The Cellon section: Berichte des Institutes für Erdwissenschaften v. 23. Graz, Autria: Karl-Franzens-Universität Graz, 262–270.
Corradini C. Corriga M. G. Männik P. Schönlaub H. P. (2015). Revised conodont stratigraphy of the cellon section (silurian, carnic Alps). Lethaia 48, 56–71. 10.1111/let.12087
Corradini C. Corriga M. G. Pondrelli M. (2022). “On the age of the Cardiola Formation (silurian) in the carnic Alps (Austria and Italy),” in European Conodont Symposium (ECOS), Utrecht 2022 - Abstracts and Programme, Utrecht, the Netherlands, September 23, 2022.
Corradini C. Corriga M. G. Pondrelli M. Suttner T. J. (2020). Conodonts across the silurian/devonian boundary in the carnic Alps (Austria and Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 549, 109097. 10.1016/j.palaeo.2019.02.023
Corradini C. Pondrelli M. (2021). The pre-Variscan sequence of the Carnic Alps (Italy-Austria). Geol. Field Trips Maps 13, 1–72. 10.3301/GFT.2021.05
Corriga M. G. Corradini C. Schönlaub H. P. Pondrelli M. (2016). Lower lochkovian (lower devonian) conodonts from cellon section (carnic Alps, Austria). Bull. Geosciences 91, 261–270. 10.3140/bull.geosci.1594
Cramer B. D. Brett C. E. Melchin M. J. Männik P. Kleffner M. A. Mclaughlin P. I. et al. (2011). Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ 13 C carb chemostratigraphy. Lethaia 44, 185–202. 10.1111/j.1502-3931.2010.00234.x
Cramer B. D. Jarvis I. (2020). “Carbon isotope stratigraphy,” in Geologic time scale 2020 (Amsterdam, Netherlands: Elsevier), 309–343. 10.1016/B978-0-12-824360-2.00011-5
Cramer B. D. Loydell D. K. Samtleben C. Munnecke A. Kaljo D. Mannik P. et al. (2010). Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (<500 k.y.) integrated conodont, graptolite, and carbon isotope (δ13Ccarb) biochemostratigraphy across the llandovery-Wenlock (Silurian) boundary: is a unified Phanerozoic. Bull. Geol. Soc. Am. 122, 1700–1716. 10.1130/B26602.1
Cramer B. D. Schmitz M. D. Huff W. D. Bergström S. M. (2015). High-precision u–pb zircon age constraints on the duration of rapid biogeochemical events during the ludlow epoch (Silurian period). J. Geol. Soc. 172, 157–160. 10.1144/jgs2014-094
Da Silva A. C. Sinnesael M. Claeys P. Davies J. H. F. L. de Winter N. J. Percival L. M. E. et al. (2020). Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Sci. Rep. 10, 12. 10.1038/s41598-020-69097-6
Da Silva A. C. Triantafyllou A. Delmelle N. (2023). Portable x-ray fluorescence calibrations: workflow and guidelines for optimizing the analysis of geological samples. Chem. Geol. 623, 121395. 10.1016/j.chemgeo.2023.121395
Da Silva A. C. A. C. De Vleeschouwer D. Boulvain F. Claeys P. Fagel N. Humblet M. et al. (2013). Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – merits and pitfalls: examples from the Devonian in Belgium. Mar. Petroleum Geol. 46, 173–189. 10.1016/j.marpetgeo.2013.06.012
De Vleeschouwer D. Da Silva A. C. Sinnesael M. Chen D. Day J. E. Whalen M. T. et al. (2017). Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 1–11. 10.1038/s41467-017-02407-1
De Vleeschouwer D. Parnell A. C. (2014). Reducing time-scale uncertainty for the devonian by integrating astrochronology and bayesian statistics. Geology 42, 491–494. 10.1130/G35618.1
Frýda J. Lehnert O. Frýdová B. Farkaš J. Kubajko M. (2021a). Carbon and sulfur cycling during the mid-Ludfordian anomaly and the linkage with the late Silurian Lau/Kozlowskii Bioevent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 564, 110152. 10.1016/j.palaeo.2020.110152
Frýda J. Lehnert O. Joachimski M. M. Männik P. Kubajko M. Mergl M. et al. (2021b). The Mid-Ludfordian (late Silurian) Glaciation: a link with global changes in ocean chemistry and ecosystem overturns. Earth-Science Rev. 220, 103652. 10.1016/j.earscirev.2021.103652
Goldman D. Sadler P. M. Leslie S. A. Melchin M. J. Agterberg F. P. Gradstein F. M. (2020). “Chapter 20 - the ordovician period,” in Geologic time scale 2020. Editors Gradstein F. M. Ogg J. G. Schmitz M. D. Ogg G. M. (Amsterdam, Netherlands: Elsevier), 631–694. 10.1016/B978-0-12-824360-2.00020-6
Gradstein F. M. Ogg J. G. Schmitz M. D. Ogg G. M. (2020). “Chapter 14 - geomathematics,” Geologic time scale 2020 (Amsterdam, Netherlands: Elsevier), 401–439. 10.1016/B978-0-12-824360-2.00014-0
Harrigan C. O. Schmitz M. D. Over D. J. Trayler R. B. Davydov V. I. (2022). Recalibrating the Devonian time scale: a new method for integrating radioisotopic and astrochronologic ages in a Bayesian framework. Bull. Geol. Soc. Am. 134, 1931–1948. 10.1130/B36128.1
Hinnov L. A. (2013). Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Bull. Geol. Soc. Am. 125, 1703–1734. 10.1130/B30934.1
Hinnov L. A. (2018). Cyclostratigraphy and astrochronology in 2018. Amsterdam, Netherlands: Elsevier Ltd, 1–80. 10.1016/bs.sats.2018.08.004
Hinnov L. A. L. A. Hilgen F. J. (2012). Cyclostratigraphy and astrochronology: the geologic time scale, 63–83. 10.1016/B978-0-444-59425-9.00004-4
Histon K. (2012a). Paleoenvironmental and temporal significance of variably colored Paleozoic orthoconic nautiloid cephalopod accumulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367–368, 193–208. 10.1016/j.palaeo.2012.07.008
Histon K. (2012b). The silurian nautiloid-bearing strata of the cellon section (carnic Alps, Austria): color variation related to events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367–368, 231–255. 10.1016/j.palaeo.2012.10.012
Huang C. (2018). Astronomical time scale for the mesozoic. Amsterdam, Netherlands: Elsevier Ltd, 81–150. 10.1016/bs.sats.2018.08.005
Husson J. M. Schoene B. Bluher S. Maloof A. C. (2016). Chemostratigraphic and U-Pb geochronologic constraints on carbon cycling across the Silurian-Devonian boundary. Earth Planet. Sci. Lett. 436, 108–120. 10.1016/j.epsl.2015.11.044
Jaeger H. (1975). Die Graptolithenführung im Silur/Devon des Cellon-Profils (Karnische Alpen): Carinthia II, v. 165./85, p. S, 111–126.
Jaeger H. Schönlaub H. P. (1980). Silur und Devon nördlich der Gundersheimer Alm in den Karnischen Alpen (Österreich): Carinthia II, v. 170/190 3 figs., 5 pls., Klagenfurt, 403–444.
Jansson R. Dynesius M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33, 741–777. 10.1146/annurev.ecolsys.33.010802.150520
Jarochowska E. Bremer O. Yiu A. Märss T. Blom H. Mörs T. et al. (2021). Revision of thelodonts, acanthodians, conodonts, and the depositional environments in the Burgen outlier (Ludlow, Silurian) of Gotland v. 143. Sweden: Gff, 168–189. 10.1080/11035897.2021.1907441
Jeppsson L. Aldridge R. J. (2000). Ludlow (late Silurian) oceanic episodes and events. J. Geol. Soc. 157, 1137–1148. 10.1144/jgs.157.6.1137
Kaljo D. Boucot A. J. Corfield R. M. Le Herisse A. Koren T. N. Kříž J. et al. (1995). “Silurian bioevents,” in Global events and event stratigraphy in the Phanerozoic. Editor Walliser O. H. (Berlin, Heidelberg: Springer-Verlag), 173–224. 10.1007/978-3-642-79634-0_10
Koz W. Sobie K. (2012). Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland) — dustiness as a possible link between global climate and the Silurian carbon isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 341, 74–97. 10.1016/j.palaeo.2012.04.024
Laskar J. Fienga A. Gastineau M. Manche H. (2011). La2010: a new orbital solution for the long-term motion of the Earth. Astronomy Astrophysics 532, A89. 10.1051/0004-6361/201116836
Laskar J. Robutel P. Joutel F. Gastineau M. Correia a. C. M. Levrard B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy Astrophysics 428, 261–285. 10.1051/0004-6361:20041335
Lehnert O. Fryda J. Joachimski M. Meinhold G. Cap P. (2012). A latest silurian supergreenhouse: the trigger for the Pridoli transgrediens extinction event: 34th international geological congress.
Li M. Ogg J. Zhang Y. Huang C. Hinnov L. Chen Z. Q. et al. (2016). Astronomical tuning of the end-permian extinction and the early triassic epoch of south China and Germany. Earth Planet. Sci. Lett. 441, 10–25. 10.1016/j.epsl.2016.02.017
Ma C. Li M. (2020). Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies. Geosci. Front. 11, 1345–1352. 10.1016/j.gsf.2020.01.013
Małkowski K. Racki G. (2009). A global biogeochemical perturbation across the Silurian-Devonian boundary: ocean-continent-biosphere feedbacks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 244–254. 10.1016/j.palaeo.2009.03.010
Martinez M. (2018). Mechanisms of preservation of the eccentricity and longer-term Milankovitch cycles in detrital supply and carbonate production in hemipelagic marl-limestone alternations. Stratigr. Timescales 3, 189–218. 10.1016/bs.sats.2018.08.002
Martinez M. Aguirre-Urreta B. Dera G. Lescano M. Omarini J. Tunik M. et al. (2023). Synchrony of carbon cycle fluctuations, volcanism and orbital forcing during the Early Cretaceous. Earth-Science Rev. 239, 104356. 10.1016/j.earscirev.2023.104356
McLaughlin P. I. Bancroft A. M. Brett C. E. Emsbo P. (2018). The rise of pinnacle reefs: islands of diversity in seas of despair. GSA Field Guid. 51, 23–33. 10.1130/2018.0051(02
McLaughlin P. I. Emsbo P. Brett C. E. Bancroft A. M. Desrochers A. Vandenbroucke T. R. A. (2019). The rise of pinnacle reefs: a step change in marine evolution triggered by perturbation of the global carbon cycle. Earth Planet. Sci. Lett. 515, 13–25. 10.1016/j.epsl.2019.02.039
Melchin M. J. Sadler P. M. Cramer B. D. (2020). “Chapter 21 - the Silurian period,” in Geologic time scale 2020 Editors Gradstein F. M. Ogg J. G. Schmitz M. D. Ogg G. M. (Amsterdam, Netherlands: Elsevier), 695–732. 10.1016/B978-0-12-824360-2.00021-8
Meyers S. R. (2019). Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Rev. 190, 190–223. 10.1016/j.earscirev.2018.11.015
Meyers S. R. Siewert S. E. Singer B. S. Sageman B. B. Condon D. J. Obradovich J. D. et al. (2012). Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, western interior Basin, USA. Geology 40, 7–10. 10.1130/G32261.1
Mitchell R. N. Bice D. M. Montanari A. Cleaveland L. C. Christianson K. T. Coccioni R. et al. (2008). Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2). Earth Planet. Sci. Lett. 267, 1–16. 10.1016/j.epsl.2007.11.026
Morlet J. Arens G. Fourgeau E. Giard D. (1982a). Wave propagation and sampling theory—Part II: sampling theory and complex waves. GEOPHYSICS 47, 222–236. 10.1190/1.1441329
Morlet J. Arens G. Fourgeau E. Giard D. (1982b). Wave propagation and sampling theory - Part I. Complex signal and scattering in multilayered media. Geophysics 47, 203–221. 10.1190/1.1441328
Mutterlose J. Ruffell A. (1999). Milankovitch-scale palaeoclimate changes in pale-dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 133–160. 10.1016/S0031-0182(99)00107-8
Olsen P. E. Laskar J. Kent D. V. Kinney S. T. Reynolds D. J. Sha J. et al. (2019). Mapping solar system chaos with the geological orrery. Proc. Natl. Acad. Sci. U. S. A. 166, 10664–10673. 10.1073/pnas.1813901116
Pondrelli M. Corradini C. Spalletta C. Simonetto L. Perri M. C. Corriga M. G. et al. (2020). Geological map and stratigraphic evolution of the central sector of the Carnic Alps (Austria-Italy): Italian. J. Geosciences 139, 469–484. 10.3301/IJG.2020.16
Racki G. Baliński A. Wrona R. Małkowski K. Drygant D. Szaniawski H. (2012). Faunal dynamics across the silurian-devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the ireviken and klonk events. Acta Palaeontol. Pol. 57, 795–832. 10.4202/app.2011.0206
Rothwell R. G. Croudace I. W. (2015). Micro-XRF studies of sediment cores: micro-XRF studies of sediment cores: applications of a non-destructive tool for the. Environ. Sci. 17, 25–35. 10.1007/978-94-017-9849-5
Russell B. Han J. (2016). Jean morlet and the continuous wavelet transform: morlet and the continuous wavelet transform. CREWES Res. Rep. 28, 1–15.
Sadler P. M. Cooper R. A. Melchin M. (2009). High-resolution, early Paleozoic (Ordovician-Silurian) time scales. Bull. Geol. Soc. Am. 121, 887–906. 10.1130/B26357.1
Sageman B. B. Singer B. S. Meyers S. R. Siewert S. E. Walaszczyk I. Condon D. J. et al. (2014). Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the cretaceous niobrara formation, western interior basin, USA. U. S. A. GSA Bull. 126, 956–973. 10.1130/B30929.1
Schönlaub H. P. (1979). Das Paläozoikum in Österreich VerbreitungStratigraphie, Korrelation, Entwicklung und Paläogeographie nicht-metamorpher und metamorpher Abfolgen, 142.
Schönlaub H. P. (1992). Stratigraphy, Biogeography and Paleoclimatology of the Alpine Paleozoic and its Implications for Plate Movements: Jahrbuch der Geologischen Bundesanstalt, v. 135, 381–418. Available at: http://opac.geologie.ac.at/ais312/dispatcher.aspx?action=detail&database=ChoiceFullCatalogue&priref=200020132.
Schönlaub H. P. Kreutzer L. H. Joachimskia M. M. (1994). Paleozoic boundary sections of the carnic Alps (southern Austria), in geochemical event markers in the phanerozoic. Abstracts and guidebook abstracts and guidebook. Erlanger Geol. abh., 77–103.
Scotese C. R. (2021). An atlas of phanerozoic paleogeographic maps: the seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 49, 679–728. 10.1146/annurev-earth-081320-064052
Sinnesael M. De Vleeschouwer D. Zeeden C. Batenburg S. J. Da Silva A. C. de Winter N. J. et al. (2019). The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth-Science Rev. 199, 102965. 10.1016/j.earscirev.2019.102965
Spiridonov A. Stankevič R. Gečas T. Brazauskas A. Kaminskas D. Musteikis P. et al. (2020). Ultra-high resolution multivariate record and multiscale causal analysis of Pridoli (late Silurian): implications for global stratigraphy, turnover events, and climate-biota interactions. Gondwana Res. 86, 222–249. 10.1016/j.gr.2020.05.015
Sproson A. D. (2020). Pacing of the latest Ordovician and Silurian carbon cycle by a ∼4.5 Myr orbital cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109543. 10.1016/j.palaeo.2019.109543
Torrence C. Compo G. P. (1998). A practical guide to wavelet analysis. Bull. Am. meteorological Soc. 79, 61–78. 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
Trayler R. Schmitz M. Schmitz M. Meyers S. R. Meyers S. R. (2023). Bayesian integration of astrochronology and radioisotope geochronology. Geochronology, 1–29. 10.5194/gchron-2023-22
Vandenbroucke T. R. A. Emsbo P. Munnecke A. Nuns N. Duponchel L. Lepot K. et al. (2015). Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nat. Commun. 6, 7966–7967. 10.1038/ncomms8966
von Raumer J. F. Stampfli G. M. (2008). The birth of the Rheic Ocean - early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461, 9–20. 10.1016/j.tecto.2008.04.012
Walliser O. H. (1964). Conodonten des Silurs: Abhandlungen des Hessischen Landesamtes für Bodenforschung zu Wiesbaden, v. 41, 1–106.
Waltham D. (2015). Milankovitch Period uncertainties and their impact on cyclostratigraphy. J. Sediment. Res. 85, 990–998. 10.2110/jsr.2015.66
Wenzel B. (1997). Isotopenstratigraphische Untersuchnungen an silurischen Abfolgen und deren paläozeanographische Interpretazion: Erlanger geologischen Abhandlungen, v. 129, 1–117.
Westerhold T. Röhl U. Laskar J. (2012). Time scale controversy: accurate orbital calibration of the early Paleogene. Geochem. Geophys. Geosystems 13, 1–19. 10.1029/2012GC004096
Wu H. Fang Q. Hinnov L. A. Zhang S. Yang T. Shi M. et al. (2023). Astronomical time scale for the paleozoic era. Earth-Science Rev. 244, 104510. 10.1016/j.earscirev.2023.104510
Žigaite Ž. Joachimski M. M. Žigaitė Ž. Joachimski M. M. Lehnert O. Brazauskas A. (2010). δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 242–247. 10.1016/j.palaeo.2010.03.033