[en] Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons.
METHODS: Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with virogenic, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females.
RESULTS: In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice.
CONCLUSIONS: Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause.
SIGNIFICANCE STATEMENT: Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Fernandois, Daniela; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Rusidze, Marian; Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
Mueller-Fielitz, Helge; Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
Sauve, Florent; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Deligia, Eleonora; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Silva, Mauro S B; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Evrard, Florence ; Université de Liège - ULiège > GIGA ; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Franco-García, Aurelio; Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
Mazur, Daniele; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Martinez-Corral, Ines; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Jouy, Nathalie; PLBS UAR 2014 - US41, France
Rasika, S; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Maurage, Claude-Alain; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Giacobini, Paolo; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Nogueiras, Ruben; CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
Dehouck, Benedicte; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
Schwaninger, Markus; Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
Lenfant, Francoise; Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
Prevot, Vincent; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France. Electronic address: vincent.prevot@inserm.fr
Hunzicker-Dunn, M., Mayo, K., Gonadotropinsignaling in the ovary. Plant, T.M., Zeleznik, J., (eds.) Knobil and Neill's physiology of reproduction, 4th ed., 2015, Elsevier, New York, 895–946.
Sarkar, D.K., Minami, S., Diurnal variation in luteinizing hormone-releasing hormone and beta-endorphin release in pituitary portal plasma during the rat estrous cycle. Biol Reprod 53 (1995), 38–45.
Frost, S.I., Keen, K.L., Levine, J.E., Terasawa, E., Microdialysis methods for in vivo neuropeptide measurement in the stalk-median eminence in the Rhesus monkey. J Neurosci Methods 168 (2008), 26–34.
Caraty, A., Orgeur, P., Thiery, J.C., Demonstration of the pulsatile secretion of LH-RH into hypophysial portal blood of ewes using an original technic for multiple samples. C R Sci Acad Sci III 295 (1982), 103–106.
Clarke, I.J., Cummins, J.T., The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111 (1982), 1737–1739.
Moenter, S.M., Brand, R.C., Karsch, F.J., Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: insights into the mechanism of GnRH surge induction. Endocrinology 130 (1992), 2978–2984.
Moenter, S.M., Brand, R.M., Midgley, A.R., Karsch, F.J., Dynamics of gonadotropin-releasing hormone release during a pulse. Endocrinology 130 (1992), 503–510.
Hoffman, A.R., Crowley, W.F. Jr., Induction of puberty in men by long-term pulsatile administration of low-dose gonadotropin-releasing hormone. N Engl J Med 307 (1982), 1237–1241.
Reame, N., Sauder, S.E., Kelch, R.P., Marshall, J.C., Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab 59 (1984), 328–337.
Czieselsky, K., Prescott, M., Porteous, R., Campos, P., Clarkson, J., Steyn, F.J., et al. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology 157 (2016), 4794–4802.
Wintermantel, T.M., Campbell, R.E., Porteous, R., Bock, D., Grone, H.J., Todman, M.G., et al. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52 (2006), 271–280.
Wang, L., Vanacker, C., Burger, L.L., Barnes, T., Shah, Y.M., Myers, M.G., et al. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. Elife, 2019, 8.
Mayer, C., Acosta-Martinez, M., Dubois, S.L., Wolfe, A., Radovick, S., Boehm, U., et al. Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A 107 (2010), 22693–22698.
Dupont, S., Krust, A., Gansmuller, A., Dierich, A., Chambon, P., Mark, M., Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127 (2000), 4277–4291.
d'Anglemont de Tassigny, X., Campagne, C., Dehouck, B., Leroy, D., Holstein, G.R., Beauvillain, J.C., et al. Coupling of neuronal nitric oxide synthase to NMDA receptors via postsynaptic density-95 depends on estrogen and contributes to the central control of adult female reproduction. J Neurosci 27 (2007), 6103–6114.
Chachlaki, K., Malone, S.A., Qualls-Creekmore, E., Hrabovszky, E., Munzberg, H., Giacobini, P., et al. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J Comp Neurol 525 (2017), 3177–3189.
Cheong, R.Y., Czieselsky, K., Porteous, R., Herbison, A.E., Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J Neurosci 35 (2015), 14533–14543.
Wakabayashi, Y., Nakada, T., Murata, K., Ohkura, S., Mogi, K., Navarro, V.M., et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30 (2010), 3124–3132.
Dubois, S.L., Acosta-Martinez, M., DeJoseph, M.R., Wolfe, A., Radovick, S., Boehm, U., et al. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor alpha in kisspeptin neurons. Endocrinology 156 (2015), 1111–1120.
McQuillan, H.J., Clarkson, J., Kauff, A., Han, S.Y., Yip, S.H., Cheong, I., et al. Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice. Nat Commun, 13, 2022, 7433.
Woller, M.J., Terasawa, E., Estradiol enhances the action of neuropeptide Y on in vivo luteinizing hormone-releasing hormone release in the ovariectomized rhesus monkey. Neuroendocrinology 56 (1992), 921–925.
Vulliemoz, N.R., Xiao, E., Xia-Zhang, L., Wardlaw, S.L., Ferin, M., Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey. Endocrinology 146 (2005), 784–789.
Padilla, S.L., Qiu, J., Nestor, C.C., Zhang, C., Smith, A.W., Whiddon, B.B., et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci U S A 114 (2017), 2413–2418.
Coutinho, E.A., Prescott, M., Hessler, S., Marshall, C.J., Herbison, A.E., Campbell, R.E., Activation of a classic hunger circuit slows luteinizing hormone pulsatility. Neuroendocrinology 110 (2020), 671–687.
Ichimaru, T., Mori, Y., Okamura, H., A possible role of neuropeptide Y as a mediator of undernutrition to the hypothalamic gonadotropin-releasing hormone pulse generator in goats. Endocrinology 142 (2001), 2489–2498.
Olofsson, L.E., Pierce, A.A., Xu, A.W., Functional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake. Proc Natl Acad Sci U S A 106 (2009), 15932–15937.
Prevot, V., Dehouck, B., Sharif, A., Ciofi, P., Giacobini, P., Clasadonte, J., The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39 (2018), 333–368.
Kumar, T.C., Knowles, F., A system linking the third ventricle with the pars tuberalis of the rhesus monkey. Nature 215 (1967), 54–55.
Langub, M.C. Jr., Watson, R.E. Jr., Estrogen receptor-immunoreactive glia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy. Endocrinology 130 (1992), 364–372.
de Seranno, S., d'Anglemont de Tassigny, X., Estrella, C., Loyens, A., Kasparov, S., Leroy, D., et al. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 151 (2010), 1760–1772.
Lhomme, T., Clasadonte, J., Imbernon, M., Fernandois, D., Sauve, F., Caron, E., et al. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Invest, 131, 2021, e140521.
Bolborea, M., Pollatzek, E., Benford, H., Sotelo-Hitschfeld, T., Dale, N., Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. Proc Natl Acad Sci U S A 117 (2020), 14473–14481.
Muller-Fielitz, H., Stahr, M., Bernau, M., Richter, M., Abele, S., Krajka, V., et al. Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat Commun, 8, 2017, 484.
Steculorum, S.M., Ruud, J., Karakasilioti, I., Backes, H., Engstrom Ruud, L., Timper, K., et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165 (2016), 125–138.
Prevot, V., Croix, D., Bouret, S., Dutoit, S., Tramu, G., Stefano, G.B., et al. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94 (1999), 809–819.
Parkash, J., Messina, A., Langlet, F., Cimino, I., Loyens, A., Mazur, D., et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun, 6, 2015, 6385.
Weidlinger, S., Winterberger, K., Pape, J., Weidlinger, M., Janka, H., von Wolff, M., et al. Impact of estrogens on resting energy expenditure: a systematic review. Obes Rev, 24, 2023, e13605.
Camporez, J.P., Jornayvaz, F.R., Lee, H.Y., Kanda, S., Guigni, B.A., Kahn, M., et al. Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance. Endocrinology 154 (2013), 1021–1028.
Ainslie, D.A., Morris, M.J., Wittert, G., Turnbull, H., Proietto, J., Thorburn, A.W., Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int J Obes Relat Metab Disord 25 (2001), 1680–1688.
Harris, H.A., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Characterization of the biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target tissues in vivo through the use of an ERalpha-selective ligand. Endocrinology 143 (2002), 4172–4177.
Munzberg, H., Jobst, E.E., Bates, S.H., Jones, J., Villanueva, E., Leshan, R., et al. Appropriate inhibition of orexigenic hypothalamic arcuate nucleus neurons independently of leptin receptor/STAT3 signaling. J Neurosci 27 (2007), 69–74.
Davis, S.R., Lambrinoudaki, I., Lumsden, M., Mishra, G.D., Pal, L., Rees, M., et al. Menopause. Nat Rev Dis Primers, 1, 2015, 15004.
Hall, J.E., Lavoie, H.B., Marsh, E.E., Martin, K.A., Decrease in gonadotropin-releasing hormone (GnRH) pulse frequency with aging in postmenopausal women. J Clin Endocrinol Metab 85 (2000), 1794–1800.
Rossmanith, W.G., Handke-Vesely, A., Wirth, U., Scherbaum, W.A., Does the gonadotropin pulsatility of postmenopausal women represent the unrestrained hypothalamic-pituitary activity?. Eur J Endocrinol 130 (1994), 485–493.
Melum, V.J., Saenz de Miera, C., Markussen, F.A.F., Cazarez-Marquez, F., Jaeger, C., Sandve, S.R., et al. Hypothalamic tanycytes as mediators of maternally programmed seasonal plasticity. Curr Biol 34 (2024), 632–640.e6 [in press].
Rivagorda, M., Prevot, V., Schwaninger, M., Seasonal plasticity: tanycytes give the hypothalamus a spring makeover. Curr Biol 34 (2024), R209–R211 in press.
Saenz de Miera, C., Bothorel, B., Jaeger, C., Simonneaux, V., Hazlerigg, D., Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland. Proc Natl Acad Sci U S A 114 (2017), 8408–8413.
Samms, R.J., Lewis, J.E., Lory, A., Fowler, M.J., Cooper, S., Warner, A., et al. Antibody-mediated inhibition of the FGFR1c isoform induces a catabolic lean state in Siberian hamsters. Curr Biol 25 (2015), 2997–3003.
Yamamura, T., Hirunagi, K., Ebihara, S., Yoshimura, T., Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 145 (2004), 4264–4267.
Rodriguez-Cortes, B., Hurtado-Alvarado, G., Martinez-Gomez, R., Leon-Mercado, L.A., Prager-Khoutorsky, M., Buijs, R.M., Suprachiasmatic nucleus-mediated glucose entry into the arcuate nucleus determines the daily rhythm in blood glycemia. Curr Biol 32 (2022), 796–805e4.
Imbernon, M., Dehouck, B., Prevot, V., Glycemic control: tanycytes march to the beat of the suprachiasmatic drummer. Curr Biol 32 (2022), R173–R176.
Xu, Y., Nedungadi, T.P., Zhu, L., Sobhani, N., Irani, B.G., Davis, K.E., et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 14 (2011), 453–465.
Nampoothiri, S., Nogueiras, R., Schwaninger, M., Prevot, V., Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 4 (2022), 813–825.
Clasadonte, J., Poulain, P., Hanchate, N.K., Corfas, G., Ojeda, S.R., Prevot, V., Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci U S A 108 (2011), 16104–16109.
Varela, L., Stutz, B., Song, J.E., Kim, J.G., Liu, Z.W., Gao, X.B., et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. J Clin Invest, 131, 2021.
Bottcher, M., Muller-Fielitz, H., Sundaram, S.M., Gallet, S., Neve, V., Shionoya, K., et al. NF-kappaB signaling in tanycytes mediates inflammation-induced anorexia. Mol Metab, 39, 2020, 101022.
Gao, Q., Mezei, G., Nie, Y., Rao, Y., Choi, C.S., Bechmann, I., et al. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med 13 (2007), 89–94.
Eckel, L.A., The ovarian hormone estradiol plays a crucial role in the control of food intake in females. Physiol Behav 104 (2011), 517–524.
Yeo, G.S.H., Chao, D.H.M., Siegert, A.M., Koerperich, Z.M., Ericson, M.D., Simonds, S.E., et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol Metab, 48, 2021, 101206.
Rohrbach, A., Caron, E., Dali, R., Brunner, M., Pasquettaz, R., Kolotuev, I., et al. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol Metab, 53, 2021, 101311.
Yoo, S., Cha, D., Kim, S., Jiang, L., Cooke, P., Adebesin, M., et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68 (2020), 1987–2000.
Balland, E., Dam, J., Langlet, F., Caron, E., Steculorum, S., Messina, A., et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19 (2014), 293–301.
Collden, G., Balland, E., Parkash, J., Caron, E., Langlet, F., Prevot, V., et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol Metab 4 (2015), 15–24.
Duquenne, M., Folgueira, C., Bourouh, C., Millet, M., Silva, A., Clasadonte, J., et al. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 3 (2021), 1071–1090.
Imbernon, M., Saponaro, C., Helms, H.C.C., Duquenne, M., Fernandois, D., Deligia, E., et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab 34 (2022), 1054–63e7.
Pena-Leon, V., Folgueira, C., Barja-Fernandez, S., Perez-Lois, R., Da Silva, Lima N., Martin, M., et al. Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat Metab 4 (2022), 901–917.
Porniece Kumar, M., Cremer, A.L., Klemm, P., Steuernagel, L., Sundaram, S., Jais, A., et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab 3 (2021), 1662–1679.
Duquenne, M., Deligia, E., Folgueira, C., Bourouh, C., Caron, E., Pfrieger, F., et al. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Mol Metab, 2024 [in press].
Grana-Barcia, M., Lado-Abeal, J., Liz-Leston, J.L., Lojo, S., Novo-Dominguez, A., Aguilar-Fernandez, J., Depression of FSH and LH secretion following pulsatile GnRH administration in ovariectomized women. Hum Reprod 13 (1998), 525–530.
Hamood, R., Hamood, H., Merhasin, I., Keinan-Boker, L., Diabetes after hormone therapy in breast cancer survivors: a case-cohort study. J Clin Oncol 36 (2018), 2061–2069.
Manfredi-Lozano, M., Leysen, V., Adamo, M., Paiva, I., Rovera, R., Pignat, J.M., et al. GnRH replacement rescues cognition in down syndrome. Science, 377, 2022, eabq4515.
Demetrius, L.A., Eckert, A., Grimm, A., Sex differences in Alzheimer's disease: metabolic reprogramming and therapeutic intervention. Trends Endocrinol Metab 32 (2021), 963–979.
Sauve, F., Kacimi, L., Prevot, V., The hypothalamic-pituitary-gonadal axis and the enigma of Alzheimer disease sex differences. Nat Rev Endocrinol, 2024, 10.1038/s41574-024-00981-1.
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396 (2020), 413–446.
Fitzpatrick, A.L., Kuller, L.H., Lopez, O.L., Diehr, P., O'Meara, E.S., Longstreth, W.T. Jr., et al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol 66 (2009), 336–342.
Sauvé, F., Ternier, G., Dewisme, J., Lebouvier, T., Dupré, E., Danis, D., et al. Tanycytes are degraded in Alzheimer's Disease, disrupting the brain-to-blood efflux of Tau. 2022, medRxiv, 10.1101/2022.05.04.22274181.
Peitz, M., Pfannkuche, K., Rajewsky, K., Edenhofer, F., Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99 (2002), 4489–4494.
Paxinos, G., Franklin, K.B.J., The mouse brain in stereotaxic coordinates. 2004, Academic Press, London.
Cora, M.C., Kooistra, L., Travlos, G., Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43 (2015), 776–793.
Stout Steele, M., Bennett, R.A., Clinical technique: dorsal ovariectomy in rodents. J Exotic Pet Med 20 (2011), 222–226.
Langlet, F., Levin, B.E., Luquet, S., Mazzone, M., Messina, A., Dunn-Meynell, A.A., et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17 (2013), 607–617.
Steyn, F.J., Wan, Y., Clarkson, J., Veldhuis, J.D., Herbison, A.E., Chen, C., Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154 (2013), 4939–4945.
Silva, M.S.B., Desroziers, E., Hessler, S., Prescott, M., Coyle, C., Herbison, A.E., et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome. EBioMedicine 44 (2019), 582–596.
Grabinski, T.M., Kneynsberg, A., Manfredsson, F.P., Kanaan, N.M., A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PloS One, 10, 2015, e0120120.
Prevot, V., Dutoit, S., Croix, D., Tramu, G., Beauvillain, J.C., Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat. Neuroscience 84 (1998), 177–191.
Cruz, G., Barra, R., González, D., Sotomayor-Zárate, R., Lara, H.E., Temporal window in which exposure to estradiol permanently modifies ovarian function causing polycystic ovary morphology in rats. Fertil Steril 98 (2012), 1283–1290.
Fernandois, D., Lara, H.E., Paredes, A.H., Blocking of β-adrenergic receptors during the subfertile period inhibits spontaneous ovarian cyst formation in rats. Horm Metab Res 44 (2012), 682–687.
Beretta, C.A., Liu, S., Stegemann, A., Gan, Z., Wang, L., Tan, L.L., et al. Quanty-cFOS, a novel ImageJ/Fiji algorithm for automated counting of Immunoreactive cells in tissue sections. Cells, 2023, 12.