[en] The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm-3 and 180 Wh kg-1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.
Disciplines :
Chemistry
Author, co-author :
Ihrig, Martin ; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Section 4, Da'an Dist. Taipei City 106, Taiwan
Dashjav, Enkhtsetseg ; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Odenwald, Philipp; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ; Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
Dellen, Christian ; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Grüner, Daniel; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Gross, Jürgen Peter; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Nguyen, Thi Tuyet Hanh; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Lin, Yu-Hsing; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Scheld, Walter Sebastian; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Lee, Changhee ; Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
Schwaiger, Ruth; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Malzbender, Jürgen; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Guillon, Olivier; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Uhlenbruck, Sven ; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Finsterbusch, Martin ; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Tietz, Frank; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Teng, Hsisheng ; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan ; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan ; Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
Fattakhova-Rohlfing, Dina; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ; Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
BMBF - Bundesministerium für Bildung und Forschung JSPS - Japan Society for the Promotion of Science AvH - Alexander von Humboldt-Stiftung CONACYT - National Council of Science and Technology
Funding text :
Financial support by the German Federal Ministry of Education and Research (projects FestBatt 2-Oxid, grant number 13XP0434A, CatSE2, grant number 13XP0510A, ProFeLi, grant number 13XP0184B, AdamBatt, grant number 13XP0305A) and the Taiwanese Ministry of Science and Technology under project no 111-2636-E–006-018 is gratefully acknowledged. The authors take responsibility for the content of this publication. M.I. thanks the Alexander-von-Humboldt Foundation and the Taiwanese National Science and Technology Council for funding (grant no.: 112-2927-I-011-505). M.I., W.S.S., and C.L. thank the “Programm des projektbezogenen Personenaustauschs Japan JSPS 2023-2025, Projekt-ID: 57663676, and JSPS Bilateral Program, Program Number: JPJSBP120233505” for funding. The authors thank M. Ziegner for XRD analyses, Dr. E. Wessel for TEM studies, and Dr. H. Hartmann for XPS measurements. The authors would also like to thank Professor T. Abe (Kyoto University) for providing laboratories and support with the electrochemical analysis of the cells.
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nat. Energy 2018, 3 ( 4), 267- 278, 10.1038/s41560-018-0107-2
Janek, J.; Zeier, W. G. Challenges in Speeding up Solid-State Battery Development. Nat. Energy 2023, 8 ( 3), 230- 240, 10.1038/s41560-023-01208-9
Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3 ( 4), 279- 289, 10.1038/s41560-018-0108-1
Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 ( 6058), 928- 935, 10.1126/science.1212741
Shi, C.; Alexander, G. V.; O’Neill, J.; Duncan, K.; Godbey, G.; Wachsman, E. D. All-Solid-State Garnet Type Sulfurized Polyacrylonitrile/Lithium-Metal Battery Enabled by an Inorganic Lithium Conductive Salt and a Bilayer Electrolyte Architecture. ACS Energy Lett. 2023, 8 ( 4), 1803- 1810, 10.1021/acsenergylett.3c00380
Yang, M.; Yao, Y.; Chang, M.; Tian, F.; Xie, W.; Zhao, X.; Yu, Y.; Yao, X. High Energy Density Sulfur-Rich Mos6-Based Nanocomposite for Room Temperature All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2023, 13 ( 28), 2300962 10.1002/aenm.202300962
Janek, J.; Zeier, W. G. A Solid Future for Battery Development. Nat. Energy 2016, 1, 16141 10.1038/nenergy.2016.141
Yu, X.; Manthiram, A. A Review of Composite Polymer-Ceramic Electrolytes for Lithium Batteries. Energy Storage Mater. 2021, 34, 282- 300, 10.1016/j.ensm.2020.10.006
Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P.-C.; Liu, K.; Cui, Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte Via in Situ Synthesis of Monodispersed Sio2 Nanospheres in Poly(Ethylene Oxide). Nano Lett. 2016, 16 ( 1), 459- 465, 10.1021/acs.nanolett.5b04117
Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B. Peo/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From “Ceramic-in-Polymer” to “Polymer-in-Ceramic. Nano Energy 2018, 46, 176- 184, 10.1016/j.nanoen.2017.12.037
Ihrig, M.; Ye, R. J.; Laptev, A. M.; Gruner, D.; Guerdelli, R.; Scheld, W. S.; Finsterbusch, M.; Wiemhofer, H. D.; Fattakhova-Rohlfing, D.; Guillon, O. Polymer-Ceramic Composite Cathode with Enhanced Storage Capacity Manufactured by Field-Assisted Sintering and Infiltration. ACS Appl. Energy Mater. 2021, 4 ( 10), 10428- 10432, 10.1021/acsaem.1c02667
Ihrig, M.; Dashjav, E.; Laptev, A. M.; Ye, R.; Grüner, D.; Ziegner, M.; Odenwald, P.; Finsterbusch, M.; Tietz, F.; Fattakhova-Rohlfing, D.; Guillon, O. Increasing the Performance of All-Solid-State Li Batteries by Infiltration of Li-Ion Conducting Polymer into Lfp-Latp Composite Cathode. J. Power Sources 2022, 543, 231822 10.1016/j.jpowsour.2022.231822
Scheld, W. S.; Lobe, S.; Dellen, C.; Ihrig, M.; Häuschen, G.; Hoff, L. C.; Finsterbusch, M.; Uhlenbruck, S.; Guillon, O.; Fattakhova-Rohlfing, D. Rapid Thermal Processing of Garnet-Based Composite Cathodes. J. Power Sources 2022, 545, 231872 10.1016/j.jpowsour.2022.231872
Ye, R.; Hamzelui, N.; Ihrig, M.; Finsterbusch, M.; Figgemeier, E. Water-Based Fabrication of a Li|Li7la3zr2o12|Lifepo4 Solid-State Battery─toward Green Battery Production. ACS Sustainable Chem. Eng. 2022, 10 ( 23), 7613- 7624, 10.1021/acssuschemeng.2c01349
Li, C.-F.; Muruganantham, R.; Hsu, W.-C.; Ihrig, M.; Hsieh, C.-T.; Wang, C.-C.; Liu, W.-R. Atomic Layer Deposition of Zno on Li1.3al0.3ti1.7(Po4)3 Enables Its Application in All Solid-State Lithium Batteries. J. Taiwan Inst. Chem. Eng. 2023, 144, 104681 10.1016/j.jtice.2023.104681
Ye, R.; Ihrig, M.; Figgemeier, E.; Fattakhova-Rohlfing, D.; Finsterbusch, M. Aqueous Processing of Licoo2-Li6.6la3zr1.6ta0.4o12 Composite Cathode for High-Capacity Solid-State Lithium Batteries. ACS Sustainable Chem. Eng. 2023, 11, 5184- 5194, 10.1021/acssuschemeng.2c07556
Xu, Q.; Liu, Z.; Windmüller, A.; Basak, S.; Park, J.; Dzieciol, K.; Tsai, C.-L.; Yu, S.; Tempel, H.; Kungl, H.; Eichel, R.-A. Active Interphase Enables Stable Performance for an All-Phosphate-Based Composite Cathode in an All-Solid-State Battery. Small 2022, 18 ( 21), 2200266 10.1002/smll.202200266
Siyal, S. H.; Li, M.; Li, H.; Lan, J.-L.; Yu, Y.; Yang, X. Ultraviolet Irradiated Peo/Latp Composite Gel Polymer Electrolytes for Lithium-Metallic Batteries (Lmbs). Appl. Surf. Sci. 2019, 494, 1119- 1126, 10.1016/j.apsusc.2019.07.179
Liang, G.; Peterson, V. K.; See, K. W.; Guo, Z.; Pang, W. K. Developing High-Voltage Spinel Lini0.5mn1.5o4 Cathodes for High-Energy-Density Lithium-Ion Batteries: Current Achievements and Future Prospects. J. Mater. Chem. A 2020, 8 ( 31), 15373- 15398, 10.1039/D0TA02812F
Choi, J.-w.; Lee, J.-w. Improved Electrochemical Properties of Li(Ni0.6mn0.2co0.2)O2 by Surface Coating with Li1.3al0.3ti1.7(Po4)3. J. Power Sources 2016, 307, 63- 68, 10.1016/j.jpowsour.2015.12.055
Yang, C. C.; Jiang, J. R.; Karuppiah, C.; Jang, J. H.; Wu, Z. H.; Jose, R.; Lue, S. J. Latp Ionic Conductor and in-Situ Graphene Hybrid-Layer Coating on Lifepo4 Cathode Material at Different Temperatures. J. Alloys Compd. 2018, 765, 800- 811, 10.1016/j.jallcom.2018.06.289
Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30 ( 17), 1705702 10.1002/adma.201705702
Judez, X.; Eshetu, G. G.; Li, C.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule 2018, 2 ( 11), 2208- 2224, 10.1016/j.joule.2018.09.008
Gellert, M.; Dashjav, E.; Grüner, D.; Ma, Q.; Tietz, F. Compatibility Study of Oxide and Olivine Cathode Materials with Lithium Aluminum Titanium Phosphate. Ionics 2018, 24 ( 4), 1001- 1006, 10.1007/s11581-017-2276-6
Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Lett. 2015, 15 ( 4), 2740- 2745, 10.1021/acs.nanolett.5b00600
Odenwald, P.; Ma, Q.; Davaasuren, B.; Dashjav, E.; Tietz, F.; Wolff, M.; Rheinheimer, W.; Uhlenbruck, S.; Guillon, O.; Fattakhova-Rohlfing, D. The Impact of Lithium Tungstate on the Densification and Conductivity of Phosphate Lithium-Ion Conductors. ChemElectroChem 2022, 9 ( 5), e202101366 10.1002/celc.202101366
Gross, J. P.; Malzbender, J.; Dashjav, E.; Tietz, F.; Schwaiger, R. Conductivity, Microstructure and Mechanical Properties of Tape-Cast Latp with Lif and Sio2 Additives. J. Mater. Sci. 2022, 57 ( 2), 925- 938, 10.1007/s10853-021-06773-6
Kee, Y.; Lee, S. S.; Yun, H. The Mixed-Valent Titanium Phosphate, Li(2)Ti(2)(Po(4))(3), Dilithium Dititanium(Iii/Iv) Tris-(Orthophosphate). Acta Crystallogr., Sect. E: Struct. Rep. Online 2011, 67 ( 9), i49 10.1107/S1600536811031606
Wang, S.; Hwu, S.-J. Li3-Xti2(Po4)3 (0 ≤ X ≤ 1): A New Mixed Valent Titanium(Iii/Iv) Phosphate with a Nasicon-Type Structure. J. Solid State Chem. 1991, 90 ( 2), 377- 381, 10.1016/0022-4596(91)90156-C
Wäppling, R.; Häggström, L.; Ericsson, T.; Devanarayanan, S.; Karlsson, E.; Carlsson, B.; Rundqvist, S. First Order Magnetic Transition, Magnetic Structure, and Vacancy Distribution in Fe2p. J. Solid State Chem. 1975, 13 ( 3), 258- 271, 10.1016/0022-4596(75)90128-0
Tan, H. J.; Dodd, J. L.; Fultz, B. Thermodynamic and Kinetic Stability of the Solid Solution Phase in Nanocrystalline Lixfepo4. J. Phys. Chem. C 2009, 113 ( 48), 20527- 20530, 10.1021/jp907161z
Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of Dispersive Effects of the Raman D Band in Carbon Materials. Phys. Rev. B 1999, 59 ( 10), R6585- R6588, 10.1103/PhysRevB.59.R6585
Chen, C.; Yu, D.; Zhao, G.; Sun, L.; Sun, Y.; Leng, K.; Yu, M.; Sun, Y. Hierarchical Porous Graphitic Carbon for High-Performance Supercapacitors at High Temperature. RSC Adv. 2017, 7 ( 55), 34488- 34496, 10.1039/C7RA06234F
Nguyen, H. T. T.; Nguyen, D. H.; Zhang, Q.-C.; Nguyen, V.-C.; Lee, Y.-L.; Jan, J.-S.; Teng, H. Facile Li+ Transport in Interpenetrating O- and F-Containing Polymer Networks for Solid-State Lithium Batteries. Adv. Funct. Mater. 2023, 33 ( 12), 2213469 10.1002/adfm.202213469
He, R.; He, Y.; Xie, W.; Guo, B.; Yang, S. Comparative Analysis for Commercial Li-Ion Batteries Degradation Using the Distribution of Relaxation Time Method Based on Electrochemical Impedance Spectroscopy. Energy 2023, 263, 125972 10.1016/j.energy.2022.125972
Pervez, S. A.; Kim, G.; Vinayan, B. P.; Cambaz, M. A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S. Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small 2020, 16 ( 14), 2000279 10.1002/smll.202000279
Zhang, B.; Liu, Y.; Liu, J.; Sun, L.; Cong, L.; Fu, F.; Mauger, A.; Julien, C. M.; Xie, H.; Pan, X. Polymer-in-Ceramic” Based Poly(ϵ-Caprolactone)/Ceramic Composite Electrolyte for All-Solid-State Batteries. J. Energy Chem. 2021, 52, 318- 325, 10.1016/j.jechem.2020.04.025
Park, S.-H.; King, P. J.; Tian, R.; Boland, C. S.; Coelho, J.; Zhang, C.; McBean, P.; McEvoy, N.; Kremer, M. P.; Daly, D.; Coleman, J. N.; Nicolosi, V. High Areal Capacity Battery Electrodes Enabled by Segregated Nanotube Networks. Nat. Energy 2019, 4 ( 7), 560- 567, 10.1038/s41560-019-0398-y
Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Development and Challenges of Lifepo4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4 ( 2), 269- 284, 10.1039/C0EE00029A
Du, F.; Zhao, N.; Li, Y.; Chen, C.; Liu, Z.; Guo, X. All Solid State Lithium Batteries Based on Lamellar Garnet-Type Ceramic Electrolytes. J. Power Sources 2015, 300, 24- 28, 10.1016/j.jpowsour.2015.09.061
Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138 ( 30), 9385- 9388, 10.1021/jacs.6b05341
Zhou, Q.; Xu, B.; Chien, P.-H.; Li, Y.; Huang, B.; Wu, N.; Xu, H.; Grundish, N. S.; Hu, Y.-Y.; Goodenough, J. B. Nasicon Li1.2mg0.1zr1.9(Po4)3 Solid Electrolyte for an All-Solid-State Li-Metal Battery. Small Methods 2020, 4 ( 12), 2000764 10.1002/smtd.202000764
Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; Liang, J.; Li, W.; Li, J.; Liu, Y.; Huang, H.; Zhang, L.; Lu, S.; Lu, Q.; Li, R.; Singh, C. V.; Sun, X. Determining the Limiting Factor of the Electrochemical Stability Window for Peo-Based Solid Polymer Electrolytes: Main Chain or Terminal - Oh Group?. Energy Environ. Sci. 2020, 13 ( 5), 1318- 1325, 10.1039/D0EE00342E
Zhao, C.-Z.; Zhang, X.-Q.; Cheng, X.-B.; Zhang, R.; Xu, R.; Chen, P.-Y.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. An Anion-Immobilized Composite Electrolyte for Dendrite-Free Lithium Metal Anodes. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 ( 42), 11069- 11074, 10.1073/pnas.1708489114
Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lü, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A.; Goodenough, J. B. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2017, 56 ( 3), 753- 756, 10.1002/anie.201608924
Wu, N.; Chien, P.-H.; Li, Y.; Dolocan, A.; Xu, H.; Xu, B.; Grundish, N. S.; Jin, H.; Hu, Y.-Y.; Goodenough, J. B. Fast Li+ Conduction Mechanism and Interfacial Chemistry of a Nasicon/Polymer Composite Electrolyte. J. Am. Chem. Soc. 2020, 142 ( 5), 2497- 2505, 10.1021/jacs.9b12233
Yang, Z.; Yuan, H.; Zhou, C.; Wu, Y.; Tang, W.; Sang, S.; Liu, H. Facile Interfacial Adhesion Enabled Latp-Based Solid-State Lithium Metal Battery. Chem. Eng. J. 2020, 392, 123650 10.1016/j.cej.2019.123650
Yu, X.; Manthiram, A. A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic-Polymer Composite Electrolyte. ACS Appl. Energy Mater. 2020, 3 ( 3), 2916- 2924, 10.1021/acsaem.9b02547
Liu, L.; Chu, L.; Jiang, B.; Li, M. Li1.4al0.4ti1.6(Po4)3 Nanoparticle-Reinforced Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. Solid State Ionics 2019, 331, 89- 95, 10.1016/j.ssi.2019.01.007
Wang, X.; Zhai, H.; Qie, B.; Cheng, Q.; Li, A.; Borovilas, J.; Xu, B.; Shi, C.; Jin, T.; Liao, X.; Li, Y.; He, X.; Du, S.; Fu, Y.; Dontigny, M.; Zaghib, K.; Yang, Y. Rechargeable Solid-State Lithium Metal Batteries with Vertically Aligned Ceramic Nanoparticle/Polymer Composite Electrolyte. Nano Energy 2019, 60, 205- 212, 10.1016/j.nanoen.2019.03.051
Gross, J. P.; Malzbender, J.; Schwaiger, R. Strength Assessment of Al2o3 and Mgal2o4 Using Micro-and Macro-Scale Biaxial Tests. J. Mater. Sci. 2022, 57 ( 15), 7481- 7490, 10.1007/s10853-022-07143-6
Börger, A.; Supancic, P.; Danzer, R. The Ball on Three Balls Test for Strength Testing of Brittle Discs: Part Ii: Analysis of Possible Errors in the Strength Determination. J. Eur. Ceram. Soc. 2004, 24 ( 10-11), 2917- 2928, 10.1016/j.jeurceramsoc.2003.10.035
Börger, A.; Supancic, P.; Danzer, R. The Ball on Three Balls Test for Strength Testing of Brittle Discs: Stress Distribution in the Disc. J. Eur. Ceram. Soc. 2002, 22 ( 9-10), 1425- 1436, 10.1016/S0955-2219(01)00458-7
Börger, A.; Supancic, P.; Danzer, R. Ball on 3 Balls- Test (Web-App). http://www.isfk.at/de/960.
Malzbender, J.; Steinbrech, R.; Singheiser, L. Failure Probability of Solid Oxide Fuel Cells. In Ceramic Engineering and Science Proceedings; American Ceramic Society, 2008; pp 293- 298.