[en] Sodium Mn-doped iron fluorophosphate Na2Fe0·5Mn0·5PO4F is a potential positive electrode material for lithium-ion and sodium-ion batteries. This study outlines the synthesis of Na2Fe0·5Mn0·5PO4F powder through a simplified and more accessible production method. The X-rays diffraction (XRD) technique showed a pure phase with monoclinic symmetry (S.G. P21/n). The resulting uncoated material (labeled as NFeMPF) was ball-milled with dopamine hydrochloride (mentioned as dopamine hereafter) as a carbon source to enhance the specific surface and improve its electronic conductivity. Raman spectra confirmed the presence of residual carbon after the pyrolysis process. Thermogravimetric analysis (TGA) demonstrated the stability of Mn-doped iron fluorophosphate up to 1000 °C. Additionally, Mössbauer spectroscopy disclosed structural improvements in the material, indicating the reduction of all Fe(III) when coated with dopamine. The uncoated material discharge capacity when cycled against sodium exhibits reversible capacities of only 80, 67, and 38 mAh/g during the first cycle at C/20, C/16, and C/5, respectively. The coated NFeMPF@D delivered improved capacities of 272 and 202 mAh/g at C/20 and C/16, respectively. This highlights the considerable promise of the investigated phosphate-based electrode material as a cathode composite for the next generation of sodium-ion batteries.
Disciplines :
Chemistry
Author, co-author :
El Kacemi, Zineb ; AMEEC Team, LERMA, College of Engineering & Architecture, International University of Rabat, Morocco
Fkhar, Lahcen ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
El Maalam, Khadija; Durability and Engineering of Materials Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Hay Moulay Rachid Ben Guerir, Morocco
Aziam, Hasna; High Throughput Multidisciplinary Research (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Ben Youcef, Hicham; High Throughput Multidisciplinary Research (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Saadoune, Ismael; Mohammed VI Polytechnic University, Ben Guerir, Morocco
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Boschini, Frédéric ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Mounkachi, Omar; Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University in Rabat, Morocco ; College of computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
Balli, Mohamed ; AMEEC Team, LERMA, College of Engineering & Architecture, International University of Rabat, Morocco ; Department of Mechanical Engineering, Faculte de Genie, Université de Sherbrooke, Quebec, Canada
Language :
English
Title :
Downsizing and coating effects on the electrochemical performance of Mn-doped iron fluorophosphate as cathode material for sodium-ion batteries
This work is financially supported by the International University of Rabat (UIR) and the project \u2018Mat\u00E9riaux \u00E0 base de phosphate pour batteries \u00E0 haute densit\u00E9 d\u2019\u00E9nergie-PhNAMathex\u2019 of the IRESEN institute. Financial support from OCP through APPHOS & APRD programs is highly acknowledged. This work was performed in the framework of the International Research Project, IRP ATLAS.
Tarascon, J.M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414:6861 (2001), 359–367.
Kim, Y., Ha, K.H., Oh, S.M., Lee, K.T., High‐capacity anode materials for sodium‐ion batteries. Chem.–Eur. J. 20:38 (2014), 11980–11992.
Laufen, H., Klick, S., Ditler, H., Quade, K. L., Mikitisin, A., Blömeke, A., & Sauer, D. U. Extensive Multi-Method Characterization of a Commercial 1.2 Ah 18650 Sodium-Ion Battery Cell. Available at: SSRN 4542213.
Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-González, J., Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5:3 (2012), 5884–5901.
Tang, J., Dysart, A.D., Pol, V.G., Advancement in sodium-ion rechargeable batteries. Current opinion in chemical engineering 9 (2015), 34–41.
Bauer, A., Song, J., Vail, S., Pan, W., Barker, J., Lu, Y., The scale‐up and commercialization of nonaqueous Na‐ion battery technologies. Adv. Energy Mater., 8(17), 2018, 1702869.
Vaalma, C., Buchholz, D., Weil, M., Passerini, S., A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3:4 (2018), 1–11.
Saurel, D., Orayech, B., Xiao, B., Carriazo, D., Li, X., Rojo, T., From charge storage mechanism to performance: a roadmap toward high specific energy sodium‐ion batteries through carbon anode optimization. Adv. Energy Mater., 8(17), 2018, 1703268.
Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., Research development on sodium-ion batteries. Chem. Rev. 114:23 (2014), 11636–11682.
Peng, S., Han, X., Li, L., Zhu, Z., Cheng, F., Srinivansan, M., Ramakrishna, S., Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium‐ion batteries with superior rate capability and long cycling stability. Small 12:10 (2016), 1359–1368.
Han, P., Han, X., Yao, J., Liu, Z., Cao, X., Cui, G., Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochem. Commun. 61 (2015), 84–88.
Ren, W., Yao, X., Niu, C., Zheng, Z., Zhao, K., An, Q., Mai, L., Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy 28 (2016), 216–223.
Liang, X., Ou, X., Zheng, F., Pan, Q., Xiong, X., Hu, R., Liu, M., Surface modification of Na3V2 (PO4) 3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl. Mater. Interfaces 9:15 (2017), 13151–13162.
Yan, G., Mariyappan, S., Rousse, G., Jacquet, Q., Deschamps, M., David, R., Tarascon, J.M., Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2 (PO4) 2F3 material. Nat. Commun., 10(1), 2019, 585.
Liu, N., Shi, K., Ma, K., Wang, Y., Chen, J., Zhu, J., Wang, L., Promoting the performances of NaTi2 (PO4) 3 electrode for sodium ion battery by reasonable crystal design and surface modification. Ceram. Int. 46:11 (2020), 19452–19459.
Wang, J., Sun, X., Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5:1 (2012), 5163–5185.
Cui, D., Chen, S., Han, C., Ai, C., Yuan, L., Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J. Power Sources 301 (2016), 87–92.
Ling, R., Cai, S., Xie, D., Shen, W., Hu, X., Li, Y., Sun, X., Double-shelled hollow Na 2 FePO 4 F/C spheres cathode for high-performance sodium-ion batteries. J. Mater. Sci. 53 (2018), 2735–2747.
Cooper, J., Lombardi, R., Boardman, D., Carliell-Marquet, C., The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57 (2011), 78–86.
Ko, J.S., Doan-Nguyen, V.V., Kim, H.S., Petrissans, X., DeBlock, R.H., Choi, C.S., Dunn, B.S., High-rate capability of Na 2 FePO 4 F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5:35 (2017), 18707–18715.
Kondo, H., Sawada, H., Okuda, C., Sasaki, T., Influence of the active material on the electronic conductivity of the positive electrode in lithium-ion batteries. J. Electrochem. Soc., 166(8), 2019, A1285.
Zhou, J., Zhou, J., Tang, Y., Bi, Y., Wang, C., Wang, D., Shi, S., Synthesis of Na2FePO4F/C and its electrochemical performance. Ceram. Int. 39:5 (2013), 5379–5385.
Song, W., Ji, X., Wu, Z., Zhu, Y., Yao, Y., Huangfu, K., Banks, C.E., Na 2 FePO 4 F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. J. Mater. Chem. A 2:8 (2014), 2571–2577.
Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Komaba, S., Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 13:11 (2011), 1225–1228.
Gao, L., Ma, Y., Zhang, C., Cao, M., Nitrogen-doped carbon trapped MnMoO4 microrods toward high performance aqueous zinc-ion battery. J. Alloys Compd., 968, 2023, 172008.
Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Komaba, S., A comparison of crystal structures and electrode performance between Na2FePO4F and Na2Fe0. 5Mn0. 5PO4F synthesized by solid-state method for rechargeable Na-ion batteries. Electrochemistry 80:2 (2012), 80–84.
Recham, N., Chotard, J.N., Dupont, L., Djellab, K., Armand, M., Tarascon, J.M., Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc., 156(12), 2009, A993.
Jin, D., Qiu, H., Du, F., Wei, Y., Meng, X., Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries. Solid State Sci. 93 (2019), 62–69.
Wu, X., Zheng, J., Gong, Z., Yang, Y., Sol–gel synthesis and electrochemical properties of fluorophosphates Na 2 Fe 1− x Mn x PO 4 F/C (x= 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J. Mater. Chem. 21:46 (2011), 18630–18637.
Gao, L., Ma, Y., Cao, M., Self-supported Se-doped Na2Ti3O7 arrays for high performance sodium ion batteries. Int. J. Hydrogen Energy 49 (2024), 1–10.
Vertruyen, B., Eshraghi, N., Piffet, C., Bodart, J., Mahmoud, A., Boschini, F., Spray-drying of electrode materials for lithium-and sodium-ion batteries. Materials, 11(7), 2018, 1076.
Li, H., Wang, T., Wang, S., Wang, X., Xie, Y., Hu, J., Zhang, Z., Scalable synthesis of the Na2FePO4F cathode through an economical and reliable approach for sodium-ion batteries. ACS Sustain. Chem. Eng. 9:35 (2021), 11798–11806.
El Kacemi, Z., Mansouri, Z., Benyoussef, A., El Kenz, A., Balli, M., Mounkachi, O., First principle calculations on pristine and Mn-doped iron fluorophosphates as sodium-ion battery cathode materials. Comput. Mater. Sci., 206, 2022, 111292.
Zhou, F., Kang, K., Maxisch, T., Ceder, G., Morgan, D., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132:3–4 (2004), 181–186.
Wu, H., Shevlin, S.A., Meng, Q., Guo, W., Meng, Y., Lu, K., Guo, Z., Flexible and binder‐free organic cathode for high‐performance lithium‐ion batteries. Adv. Mater. 26:20 (2014), 3338–3343.
Liu, T., Kim, K.C., Lee, B., Chen, Z., Noda, S., Jang, S.S., Lee, S.W., Self-polymerized dopamine as an organic cathode for Li-and Na-ion batteries. Energy Environ. Sci. 10:1 (2017), 205–215.
El Kacemi, Z., Fkhar, L., El Maalam, K., Aziam, H., Youcef, H.B., Saadoune, I., Balli, M., Enhancement of the Na2FePO4F@ gC3N4 electrochemical performance in view of its implementation in sodium-ion batteries. Solid State Ionics, 392, 2023, 116167.
Liu, Q., Li, X., Yan, C., Tang, A., A dopamine-based high redox potential catholyte for aqueous organic redox flow battery. J. Power Sources, 460, 2020, 228124.
van de Waterbeemd, H., Carrupt, P.A., Testa, B., The electronic structure of dopamine. An ab initio electrostatic potential study of the catechol moiety. Helv. Chim. Acta 68:3 (1985), 715–723.
Brisbois, M., Krins, N., Hermann, R.P., Schrijnemakers, A., Cloots, R., Vertruyen, B., Boschini, F., Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater. Lett. 130 (2014), 263–266.
Birsa Čelič, T., Jagličič, Z., Lazar, K., Zabukovec Logar, N., Structure and magnetic properties of a new iron (II) citrate coordination polymer. Acta Crystallogr. B: Structural Science, Crystal Engineering and Materials 69:5 (2013), 490–495.
Frontera, C., Rodríguez-Carvajal, J., FullProf as a new tool for flipping ratio analysis. Phys. B Condens. Matter 335:1–4 (2003), 219–222.
Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R., QUALX2. 0: a qualitative phase analysis software using the freely available database POW_COD. J. Appl. Crystallogr. 48:2 (2015), 598–603.
Momma, K., Izumi, F., VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41:3 (2008), 653–658.
Li, Q., Liu, Z., Zheng, F., Liu, R., Lee, J., Xu, G.L., Yang, Y., Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angew. Chem. 130:37 (2018), 12094–12099.
Smiley, D.L., Carlier, D., Goward, G.R., Combining density functional theory and 23Na NMR to characterize Na2FePO4F as a potential sodium ion battery cathode. Solid State Nucl. Magn. Reson. 103 (2019), 1–8.
Wu, X., Zheng, J., Gong, Z., Yang, Y., Sol–gel synthesis and electrochemical properties of fluorophosphates Na 2 Fe 1− x Mn x PO 4 F/C (x= 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J. Mater. Chem. 21:46 (2011), 18630–18637.
Wu, L., Hu, Y., Zhang, X., Liu, J., Zhu, X., Zhong, S., Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J. Power Sources 374 (2018), 40–47.
Nazar, L.F., Makahnouk, M., Ellis, B., Toghill, K., Makimura, Y., U.S. Patent Application, No. 11/946, 2008, 38.
Principi, G., Frattini, R., Magrini, M., Mossbauer analysis of carbides extracted from heated-treated alloy steel. Gazz. Chim. Ital., 113, 1983, 281.
Mössbauer, R.L., Kernresonanzfluoreszenz von gammastrahlung in Ir 191. Z. Phys. 151 (1958), 124–143.
Santhanam, R., Rambabu, B., Research progress in high voltage spinel LiNi0. 5Mn1. 5O4 material. J. Power Sources 195:17 (2010), 5442–5451.
Kalantarian, M.M., Asgari, S., Capsoni, D., Mustarelli, P., An ab initio investigation of Li 2 M 0.5 N 0.5 SiO 4 (M, N= Mn, Fe, Co Ni) as Li-ion battery cathode materials. Phys. Chem. Chem. Phys. 15:21 (2013), 8035–8041.
Eshraghi, N., Caes, S., Mahmoud, A., Cloots, R., Vertruyen, B., Boschini, F., Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochim. Acta 228 (2017), 319–324.
Bodart, J., Eshraghi, N., Carabin, T., Vertruyen, B., Cloots, R., Boschini, F., Mahmoud, A., Spray-dried K3V (PO4) 2/C composites as novel cathode materials for K-ion batteries with superior electrochemical performance. J. Power Sources, 480, 2020, 229057.