[en] The economic and environmental advantages of Na2FePO4F fluorophosphate have positioned it as a highly promising cathode material for sodium-ion batteries (SIBs). This recognition stems from its demonstrated potential to address key challenges in energy storage systems, making it a subject of extensive research and studies. In this paper, the preparation of Na2FePO4F powder through a simplified, upscaling, and cost-effective approach that involves the direct use of phosphoric acid is described, aiming to evaluate its electrochemical performance. The obtained orthorhombic structure (S.G. Pbcn) is mixed with varying percentages of polyethylene glycol as a carbon source (15% and 20%) to generate large specific surfaces, improve electronic conductivity, and achieve an optimized carbon content for these materials. The 15% and 20% PEG-coated Na2FePO4F are evaluated at a 2 - 4 V voltage range at C/15 in Na-half cells using two electrolyte formulations: 5% FEC 1 M NaClO4:PC and 1 M NaPF6:PC. The NaPF6/FEC electrolyte exhibits better electrochemical characteristics and high cycling stability, especially in the case of the 15% PEG-coated material. These findings are also supported by the data from differential plots and rate capabilities, highlighting the potential of the coated material for applications in high-performance energy storage applications.
Disciplines :
Chemistry
Author, co-author :
El Kacemi, Zineb ; AMEEC Team, LERMA, College of Engineering & Architecture, International University of Rabat, Parc Technopolis, Morocco
Fkhar, Lahcen ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
El Maalam, Khadija; Durability and Engineering of Materials Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Morocco
Aziam, Hasna; High Throughput Multidisciplinary Research (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Ben Youcef, Hicham; High Throughput Multidisciplinary Research (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Saadoune, Ismael; Applied Chemistry and Engineering Research (ACER CoE), Mohammed VI Polytechnic University, Morocco
Ait Ali, Mustapha; Coordination Chemistry Laboratory, Faculty of Sciences Semlalia (UCA-FSSM), Cadi Ayyad University, Marrakech, Morocco
Boschini, Frédéric ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Mounkachi, Omar; Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University in Rabat, Morocco ; College of Computing, Mohammed VI Polytechnic University, Morocco ; Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
Balli, Mohamed ; AMEEC Team, LERMA, College of Engineering & Architecture, International University of Rabat, Parc Technopolis, Morocco ; Department of Mechanical Engineering, Faculté de Génie, Université de Sherbrooke, Québec, Canada
Language :
English
Title :
Unveiling the potential of Na2FePO4F@PEG composite as cathode material for sodium-ion batteries
IRESEN - Institut of Research in Solar Energy and New Energies
Funding text :
The authors would like to thank the International University of Rabat (UIR) and the IRESEN institution for their financial support of the project \u201CMat\u00E9riaux \u00E0 base de phosphate pour batteries \u00E0 haute densit\u00E9 d'\u00E9nergie-PhNAMathex.\u201D This work was performed with the support of the International Research Project, IRP ATLAS (GeorgiaTech-Lorraine, UIR, UM5), and the support of OCP Foundation through the APRD program.
Luo, W., Shen, F., Bommier, C., Zhu, H., Ji, X., Hu, L., Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49:2 (2016), 231–240.
Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., Kang, K., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater., 6(19), 2016, 1600943.
Kang, H., Liu, Y., Cao, K., Zhao, Y., Jiao, L., Wang, Y., Yuan, H., Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3:35 (2015), 17899–17913.
Ko, J.S., Doan-Nguyen, V.V., Kim, H.S., Petrissans, X., DeBlock, R.H., Choi, C.S., Dunn, B.S., High-rate capability of Na2 FePO4 F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5:35 (2017), 18707–18715.
Bauer, A., Song, J., Vail, S., Pan, W., Barker, J., Lu, Y., The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater., 8(17), 2018, 1702869.
Vaalma, C., Buchholz, D., Weil, M., Passerini, S., A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3:4 (2018), 1–11.
Saurel, D., Orayech, B., Xiao, B., Carriazo, D., Li, X., Rojo, T., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater., 8(17), 2018, 1703268.
Liu, T., Zhang, Y., Jiang, Z., Zeng, X., Ji, J., Li, Z., Liang, C., Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12:5 (2019), 1512–1533.
Roberts, S., Kendrick, E., The re-emergence of sodium ion batteries: testing, processing, and manufacturability. Nanotechnol. Sci. Appl., 2018, 23–33.
Han, M.H., Gonzalo, E., Singh, G., Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8:1 (2015), 81–102.
Tripathi, R., Wood, S.M., Islam, M.S., Nazar, L.F., Na-ion mobility in layered Na2FePO4F and olivine Na [Fe, Mn] PO 4. Energy Environ. Sci. 6:8 (2013), 2257–2264.
Yan, G., Mariyappan, S., Rousse, G., Jacquet, Q., Deschamps, M., David, R., Tarascon, J.M., Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun., 10(1), 2019, 585.
Amatucci, G.G., Pereira, N., Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128:4 (2007), 243–262.
Masquelier, C., Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113:8 (2013), 6552–6591.
Gutierrez, A., Benedek, N.A., Manthiram, A., Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem. Mater. 25:20 (2013), 4010–4016.
Ellis, B.L., Makahnouk, W.R.M., Makimura, Y., Toghill, K., Nazar, L.F., A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6:10 (2007), 749–753.
Cooper, J., Lombardi, R., Boardman, D., Carliell-Marquet, C, The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57 (2011), 78–86.
Wang, J., Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5:1 (2012), 5163–5185.
Feng, P., Wang, W., Wang, K., Cheng, S., Jiang, K., Na3V2(PO4)3/C synthesized by a facile solid-phase method assisted with agarose as a high-performance cathode for sodium-ion batteries. J. Mater. Chem. A 5:21 (2017), 10261–10268.
Langrock, A., Xu, Y., Liu, Y., Ehrman, S., Manivannan, A., Wang, C., Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J. Power Sources 223 (2013), 62–67.
Deng, X., Shi, W., Sunarso, J., Liu, M., Shao, Z., A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl. Mater. Interfaces 9:19 (2017), 16280–16287.
Cui, D., Chen, S., Han, C., Ai, C., Yuan, L., Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J. Power Sources 301 (2016), 87–92.
Ling, R., Cai, S., Xie, D., Shen, W., Hu, X., Li, Y., Sun, X., Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries. J. Mater. Sci. 53 (2018), 2735–2747.
Sharma, P., Kanchan, D.K., A comparison of effect of PEG and EC plasticizers on relaxation dynamics of PEO–PMMA–AgNO3 polymer blends. Ionics 19 (2013), 1285–1290 (Kiel).
Gupta, S., Gupta, A.K., Verma, M.L., Pandey, B.K., Influence of polyethylene glycol plasticizer on the structural and electronic properties of PEO-NaI complex: a density functional study. J. Mol. Model. 27 (2021), 1–11.
Zalipsky, S., Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 16:2–3 (1995), 157–182.
Han, P., Han, X., Yao, J., Liu, Z., Cao, X., Cui, G., Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochem. Commun. 61 (2015), 84–88.
Liang, X., Ou, X., Zheng, F., Pan, Q., Xiong, X., Hu, R., Liu, M., Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl. Mater. Interfaces 9:15 (2017), 13151–13162.
Liu, Z., Chen, H., Luo, X., et al. Synthesis of Na2FePO4F/C as cathode materials for sodium ion batteries with different solvents. J. Mater. Sci. Mater. Electron. 33 (2022), 6898–6910.
Birsa Čelič, T., Jagličič, Z., Lazar, K., Zabukovec Logar, N., Structure and magnetic properties of a new iron (II) citrate coordination polymer. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69:5 (2013), 490–495.
Frontera, C., Rodrı́guez-Carvajal, J., FullProf as a new tool for flipping ratio analysis. Phys. B Condensed Matter 335:1–4 (2003), 219–222.
El Kacemi, Z., Mansouri, Z., Benyoussef, A., El Kenz, A., Balli, M., Mounkachi, O., First principle calculations on pristine and Mn-doped iron fluorophosphates as sodium-ion battery cathode materials. Comput. Mater. Sci., 206, 2022, 111292.
Li, Q., Liu, Z., Zheng, F., Liu, R., Lee, J., Xu, G., Zhong, G., Hou, X., Fu, R., Chen, Z., Amine, K., Mi, J., Wu, S., Grey, C.P., Yang, Y., Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angew. Chem. 130:37 (2018), 12094–12099.
Borisov, S.V., Pervukhina, N.V., Magarill, S.A., Crystallographic analysis and structural features of honeycomb cation frameworks in Na2FePO4F, NaFePO4, and LiVOPO4 structures. J. Struct. Chem. 64:7 (2023), 1283–1295.
El Kacemi, Z., Fkhar, L., El Maalam, K., Aziam, H., Youcef, H.B., Saadoune, I., Balli, M., Enhancement of the Na2FePO4F@ gC3N4 electrochemical performance in view of its implementation in sodium-ion batteries. Solid State Ion., 392, 2023, 116167.
Avdeev, M., Ling, C.D., Tan, T.T., Li, S., Oyama, G., Yamada, A., Barpanda, P., Magnetic structure and properties of the rechargeable battery insertion compound Na2FePO4F. Inorg. Chem. 53:2 (2014), 682–684.
Lochab, S., Rayaprol, S., Avdeev, M., Sharma, L., Barpanda, P., Magnetic structure of fluorophosphate Na2MnPO4F sodium battery material. J. Solid State Chem., 308, 2022, 122926.
Seo, J.Y., Choi, H., Lee, A.Y., Park, S.Y., Kim, C.S., Na2Fe0.9Mn0.1PO4F composite as cathode material: structural, magnetic, and mössbauer studies. IEEE Trans. Magn. 57:2 (2020), 1–4.
Ramzan, M., Lebègue, S., Larsson, P., Ahuja, R., Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from ab initio calculations. J. Appl. Phys., 106(4), 2009.
Brisbois, M., Krins, N., Hermann, R.P., Schrijnemakers, A., Cloots, R., Vertruyen, B., Boschini, F., Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater. Lett. 130 (2014), 263–266.
Principi, G., Frattini, R., Magrini, M., Mossbauer analysis of carbides extracted from heated-treated alloy steel. Gazz. Chim. Ital., 113, 1983, 281.
Mössbauer, R.L., Kernresonanzfluoreszenz von gammastrahlung in Ir 191. Z. Phys. 151 (1958), 124–143.
Nazar, L.F., Makahnouk, M., Ellis, B., Toghill, K., & Makimura, Y. (2008). U.S. Patent Application No. 11/946,038.
Santhanam, R., Rambabu, B., Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 195:17 (2010), 5442–5451.
Kalantarian, M.M., Asgari, S., Capsoni, D., Mustarelli, P., An ab initio investigation of Li2M0.5N0.5SiO4 (M, N= Mn, Fe, Co Ni) as Li-ion battery cathode materials. Phys. Chem. Chem. Phys. 15:21 (2013), 8035–8041.
Zhou, J., Zhou, J., Tang, Y., Bi, Y., Wang, C., Wang, D., Shi, S., Synthesis of Na2FePO4F/C and its electrochemical performance. Ceram. Int. 39:5 (2013), 5379–5385.
Song, W., Ji, X., Wu, Z., Zhu, Y., Yao, Y., Huangfu, K., Banks, C.E., Na 2 FePO 4 F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. J. Mater. Chem. A 2:8 (2014), 2571–2577.
Soto, F.A., Marzouk, A., El-Mellouhi, F., Balbuena, P.B., Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30:10 (2018), 3315–3322.
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., Dempsey, J.L., A practical beginner's guide to cyclic voltammetry. J. Chem. Educ. 95:2 (2018), 197–206.