Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV–Vis spectroscopy combined study - 2024
[en] Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Disciplines :
Chemistry
Author, co-author :
Verdin, Alexandre ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Sloan-Dennison, Sian
Faulds, Karen
Graham, Duncan
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Language :
English
Title :
Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV–Vis spectroscopy combined study
Publication date :
July 2024
Journal title :
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Duan, H., Yang, Y., Zhang, Y., Yi, C., Nie, Z., He, J., What is next in polymer-grafted plasmonic nanoparticles?. Giant, 4, 2020, 100033, 10.1016/j.giant.2020.100033.
Amirjani, A., Rahbarimehr, E., Recent advances in functionalization of plasmonic nanostructures for optical sensing. Microchim. Acta, 188(2), 2021, 57, 10.1007/s00604-021-04714-3.
Ghorbani, M., Hamishehkar, H., Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int. J. Pharm. 520:1 (2017), 126–138, 10.1016/j.ijpharm.2017.02.008.
Mahalunkar, S., et al. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int. J. Nanomedicine 14 (2019), 8285–8302, 10.2147/IJN.S215142.
Theodosiou, M., Boukos, N., Sakellis, E., Zachariadis, M., Efthimiadou, E.K., Gold nanoparticle decorated pH-sensitive polymeric nanocontainers as a potential theranostic agent. Colloids Surfaces B Biointerfaces, 183, 2019, 110420, 10.1016/j.colsurfb.2019.110420.
Zubair Iqbal, M., Ali, I., Khan, W.S., Kong, X., Dempsey, E., Reversible self-assembly of gold nanoparticles in response to external stimuli. Mater. Des., 205, 2021, 109694, 10.1016/j.matdes.2021.109694.
Liu, H., Gao, X., Xu, C., Liu, D., SERS tags for biomedical detection and bioimaging. Theranostics 12:4 (2022), 1870–1903, 10.7150/thno.66859.
Oliveira, M.J., et al. Microfluidic SERS devices: brightening the future of bioanalysis. Discov. Mater., 2(1), 2022, 12, 10.1007/s43939-022-00033-3.
Fabris, L., SERS tags: the next promising tool for personalized cancer detection?. ChemNanoMat 2:4 (2016), 249–258, 10.1002/cnma.201500221.
Shi, L., et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 13:24 (2021), 10748–10764, 10.1039/D1NR02065J.
Harrison, E., et al. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Mater. Sci. Eng. C 62 (2016), 710–718, 10.1016/j.msec.2016.02.003.
Partikel, K., et al. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur. J. Pharm. Biopharm. 141 (2019), 70–80, 10.1016/j.ejpb.2019.05.006.
Xue, Y., Li, X., Li, H., Zhang, W., Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun., 5(1), 2014, 4348, 10.1038/ncomms5348.
Bürgi, T., Properties of the gold-sulphur interface: from self-assembled monolayers to clusters. Nanoscale 7:38 (2015), 15553–15567, 10.1039/c5nr03497c.
Knowles, D.B., LaCroix, A.S., Deines, N.F., Shkel, I., Record, M.T., Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proc. Natl. Acad. Sci. 108:31 (2011), 12699–12704, 10.1073/pnas.1103382108.
Dahal, U., Dormidontova, E.E., Chain conformation and hydration of polyethylene oxide grafted to gold nanoparticles: curvature and chain length effect. Macromolecules 53:19 (2020), 8160–8170, 10.1021/acs.macromol.0c01499.
Verdin, A., Sloan-Dennison, S., Malherbe, C., Graham, D., Eppe, G., SERS nanotags for folate receptor α detection at the single cell level: discrimination of overexpressing cells and potential for live cell applications. Analyst 147:14 (2022), 3328–3339, 10.1039/d2an00706a.
Scaranti, M., Cojocaru, E., Banerjee, S., Banerji, U., Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 17:6 (2020), 349–359, 10.1038/s41571-020-0339-5.
Cheung, A., et al. Targeting folate receptor alpha for cancer treatment. Oncotarget 7:32 (2016), 52553–52574, 10.18632/oncotarget.9651.
Chen, S., Lv, M., Fan, J., Huang, Y., Liang, G., Zhang, S., Bioorthogonal surface-enhanced Raman scattering flower-like nanoprobe with embedded standards for accurate cancer cell imaging. Anal. Chim. Acta, 1246, 2023, 340895, 10.1016/j.aca.2023.340895.
P. Kedarisetti et al., (200) “Enrichment and ratiometric detection of circulating tumor cells using PSMA- and folate receptor-targeted magnetic and surface-enhanced Raman scattering nanoparticles,” in Biomedical Optics Express. 11(11): Opt. Express. p. 6211.
Köker, T., et al. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun., 9(1), 2018, 607, 10.1038/s41467-018-03046-w.
Kapara, A., Brunton, V.G., Graham, D., Faulds, K., Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst 145:22 (2020), 7225–7233, 10.1039/d0an01532f.
Leventi, A.A., et al. New model for quantifying the nanoparticle concentration using SERS supported by multimodal mass spectrometry. Anal. Chem. 95:5 (2023), 2757–2764, 10.1021/acs.analchem.2c03779.
Verdin, A., Malherbe, C., Müller, W.H., Bertrand, V., Eppe, G., Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes. Anal. Bioanal. Chem. 412:28 (2020), 7739–7755, 10.1007/s00216-020-02927-8.
Wang, W., Wei, Q.-Q., Wang, J., Wang, B.-C., Zhang, S., Yuan, Z., Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant?. J. Colloid Interface Sci. 404 (2013), 223–229, 10.1016/j.jcis.2013.04.020.
Perera, G.S., Athukorale, S.A., Perez, F., Pittman, C.U., Zhang, D., Facile displacement of citrate residues from gold nanoparticle surfaces. J. Colloid Interface Sci. 511 (2018), 335–343, 10.1016/j.jcis.2017.10.014.
Xia, X., et al. Quantifying the coverage density of poly(ethylene glycol) chains on the surface of gold nanostructures. ACS Nano 6:1 (2012), 512–522, 10.1021/nn2038516.
Calvo, R., et al. Amplitude-resolved single particle spectrophotometry: a robust tool for high-throughput size characterization of plasmonic nanoparticles. Nanomaterials, 13(17), 2023, pp, 10.3390/nano13172401.
Cheng, H.-W., et al. Assessing interparticle J-aggregation of two different cyanine dyes with gold nanoparticles and their spectroscopic characteristics. J. Phys. Chem. C 119:49 (2015), 27786–27796, 10.1021/acs.jpcc.5b09973.
Leng, W., Vikesland, P.J., MGITC facilitated formation of AuNP multimers. Langmuir 30:28 (2014), 8342–8349, 10.1021/la501807n.
Qian, X., Emory, S.R., Nie, S., Anchoring molecular chromophores to colloidal gold nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. J. Am. Chem. Soc. 134:4 (2012), 2000–2003, 10.1021/ja210992b.
Le Ru, E.C.L., et al. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem. Commun. 47:13 (2011), 3903–3905, 10.1039/c1cc10484e.
Scher, K.M.R., et al. Concentration and surface chemistry dependent analyte orientation on nanoparticle surfaces. J. Phys. Chem. C 126:38 (2022), 16499–16513, 10.1021/acs.jpcc.2c05007.
Lim, I.I.S., et al. Adsorption of cyanine dyes on gold nanoparticles and formation of J-aggregates in the nanoparticle assembly. J. Phys. Chem. B 110:13 (2006), 6673–6682, 10.1021/jp057584h.
Alloa, E., Grande, V., Dilmurat, R., Beljonne, D., Würthner, F., Hayes, S.C., Resonance Raman study of the J-type aggregation process of a water soluble perylene bisimide. Phys. Chem. Chem. Phys. 21:33 (2019), 18300–18309, 10.1039/c9cp01874c.
Jahn, I.J., Mühlig, A., Cialla-May, D., Application of molecular SERS nanosensors: where we stand and where we are headed towards?. Anal. Bioanal. Chem. 412:24 (2020), 5999–6007, 10.1007/s00216-020-02779-2.
Tan, T., et al. LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy. Phys. Chem. Chem. Phys. 15:48 (2013), 21034–21042, 10.1039/C3CP52236A.