[en] Ongoing global changes, including natural land conversion for agriculture and urbanization, modify the dynamics of human-primate contacts, resulting in increased zoonotic risks. Although Asia shelters high primate diversity and experiences rapid expansion of human-primate contact zones, there remains little documentation regarding zoonotic surveillance in the primates of this region. Using the PRISMA guidelines, we conducted a systematic review to compile an inventory of zoonotic pathogens detected in wild Asian primates, while highlighting the coverage of primate species, countries, and pathogen groups surveyed, as well as the diagnostic methods used across the studies. Moreover, we compared the species richness of pathogens harbored by primates across diverse types of habitats classified according to their degree of anthropization (i.e., urban vs. rural vs. forest habitats). Searches of Scopus, PubMed, and the Global Mammal Parasite Database yielded 152 articles on 39 primate species. We inventoried 183 pathogens, including 63 helminthic gastrointestinal parasites, 2 blood-borne parasites, 42 protozoa, 45 viruses, 30 bacteria, and 1 fungus. Considering each study as a sample, species accumulation curves revealed no significant differences in specific richness between habitat types for any of the pathogen groups analyzed. This is likely due to the insufficient sampling effort (i.e., a limited number of studies) which prevents drawing conclusive findings. This systematic review identified several publication biases, particularly the uneven representation of host species and pathogen groups studied, as well as a lack of use of generic diagnostic methods. Addressing these gaps necessitates a multidisciplinary strategy framed in a One Health approach which may facilitate a broader inventory of pathogens and ultimately limit the risk of cross-species transmission at the human-primate interface. Strengthening the zoonotic surveillance in primates of this region could be realized notably through the application of more comprehensive diagnostic techniques such as broad-spectrum analyses without a priori selection.
Disciplines :
Zoology
Author, co-author :
Patouillat, Laurie ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Hambuckers, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
Sena Adi Subrata; Gadjah Mada University > Faculty of Forestry
Garigliany, Mutien-Marie ✱; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie générale et autopsies
Brotcorne, Fany ✱; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie du comportement - Ethologie et psychologie animale
✱ These authors have contributed equally to this work.
Language :
English
Title :
Zoonotic pathogens in wild Asian primates: A systematic review highlighting research gaps
Publication date :
27 June 2024
Journal title :
Frontiers in Veterinary Science
eISSN :
2297-1769
Publisher :
Frontiers, Lausanne, Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
F3/5/5-FRIA/FC-3075
Funding text :
This study was
supported by the Belgian Fund for Scientific Research (FNRS) as part
of a FRIA-FNRS fellowship (F3/5/5-FRIA/FC-3075), by the Camille
Hela Foundation from the University of Liège, the 3rd Young
Researcher Award 2021 from the Jane Goodall Institute France, and
the Belgian Federation of Graduated Women
Chapman CA Peres CA. Primate conservation in the new millennium: the role of scientists. Evol Anthropol. (2001) 10:16–33. doi: 10.1002/1520-6505(2001)10:1<16::AID-EVAN1010>3.0.CO;2-O
Galán-Acedo C Arroyo-Rodríguez V Andresen E Verde Arregoitia L Vega E Peres CA et al. The conservation value of human-modified landscapes for the world’s primates. Nat Commun. (2019) 10:152. doi: 10.1038/s41467-018-08139-0, PMID: 30635587
Almeida-Rocha JMD Peres CA Oliveira LC. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol Conserv. (2017) 215:30–8. doi: 10.1016/j.biocon.2017.08.018
Kalbitzer U Chapman CA. Primate responses to changing environments in the anthropocene In: Kalbitzer U Jack K, editors. Primate Life Histories, Sex Roles, and Adaptability. Developments in Primatology: Progress and Prospects. Cham: Springer (2018). 283–310.
Devaux CA Mediannikov O Medkour H Raoult D. Infectious disease risk across the growing human-non human primate interface: a review of the evidence. Front Public Health. (2019) 7:305. doi: 10.3389/fpubh.2019.00305, PMID: 31828053
Wolfe ND Daszak P Kilpatrick AM Burke DS. Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg Infect Dis. (2005) 11:1822–7. doi: 10.3201/eid1112.040789, PMID: 16485465
WHO (2020). Available at: https://www.who.int/news-room/fact-sheets/detail/zoonoses
Wolfe ND Dunavan CP Diamond J. Origins of major human infectious diseases. Nature. (2007) 447:279–83. doi: 10.1038/nature05775, PMID: 17507975
McMichael AJ. Environmental and social influences on emerging infectious diseases: past, present and future. Philos Trans R Soc B Biol Sci. (2004) 359:1049–58. doi: 10.1098/rstb.2004.1480, PMID: 15306389
Kaur T Singh J. Primate-parasitic zoonoses and anthropozoonoses: a literature review In: Primate Parasite Ecology: The Dynamics and Study of Host-Parasite Relationships. Eds. Michael A. Huffman and Colin A. Chapman. Cambridge: Cambridge University Press (2009). 199–230.
Cunningham AA Scoones I Wood JLN. One health for a changing world: new perspectives from Africa. Philos Trans R Soc B Biol Sci. (2017) 372:20160162. doi: 10.1098/rstb.2016.0162, PMID: 28584170
Muehlenbein MP. Disease and human/animal interactions. Annu Rev Anthropol. (2016) 45:395–416. doi: 10.1146/annurev-anthro-102215-100003
Zhu P Garber PA Wang L Li M Belov K Gillespie TR et al. Comprehensive knowledge of reservoir hosts is key to mitigating future pandemics. Innovations. (2020) 1:100065. doi: 10.1016/j.xinn.2020.100065, PMID: 33521764
Travis DA Watson RP Tauer A. The spread of pathogens through trade in wildlife. Rev Sci Tech. (2011) 30:219–39. doi: 10.20506/rst.30.1.2035
Baker RE Mahmud AS Miller IF Rajeev M Rasambainarivo F Rice BL et al. Infectious disease in an era of global change. Nat Rev Microbiol. (2022) 20:193–205. doi: 10.1038/s41579-021-00639-z, PMID: 34646006
Hassell JM Begon M Ward MJ Fèvre EM. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol. (2017) 32:55–67. doi: 10.1016/j.tree.2016.09.012, PMID: 28029378
Tilker A Abrams JF Mohamed A Nguyen A Wong ST Sollmann R et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the southeast Asian tropical biodiversity hotspot. Commun Biol. (2019) 2:396. doi: 10.1038/s42003-019-0640-y, PMID: 31701025
Dirzo R Young HS Galetti M Ceballos G Isaac NJB Collen B. Defaunation in the Anthropocene. Science. (2014) 345:401–6. doi: 10.1126/science.1251817, PMID: 25061202
Keesing F Holt RD Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett. (2006) 9:485–98. doi: 10.1111/j.1461-0248.2006.00885.x
Engel GA Hungerford L Jones-Engel L Travis D Eberle R Fuentes A et al. Risk assessment: a model for predicting cross-species transmission of simian foamy virus from macaques (M. fascicularis) to humans at a monkey temple in Bali, Indonesia. Am J Primatol. (2006) 68:934–48. doi: 10.1002/ajp.20299
Engel GA Jones-Engel L. Primates and primatologists: social contexts for interspecies pathogen transmission. Am J Primatol. (2012) 74:543–50. doi: 10.1002/ajp.20988, PMID: 21932331
Werner CS Nunn CL. Effect of urban habitat use on parasitism in mammals: a meta-analysis: urban habitat use and mammal parasitism. Proc R Soc B Biol Sci. (2020) 287:20200397. doi: 10.1098/rspb.2020.0397, PMID: 32396800
Murray MH Sánchez CA Becker DJ Byers KA Worsley-Tonks KEL Craft ME. City sicker? A meta-analysis of wildlife health and urbanization. Front Ecol Environ. (2019) 17:575–83. doi: 10.1002/fee.2126
Fernando SU Udagama P Fernando SP. Effect of urbanization on zoonotic gastrointestinal parasite prevalence in endemic toque macaque (Macaca sinica) from different climatic zones in Sri Lanka. Int J Parasitol Parasites Wildlife. (2022) 17:100–9. doi: 10.1016/j.ijppaw.2021.12.007, PMID: 35024333
Lane KE Holley C Hollocher H Fuentes A. The anthropogenic environment lessens the intensity and prevalence of gastrointestinal parasites in balinese long-tailed macaques (Macaca fascicularis). Primates. (2011) 52:117–28. doi: 10.1007/s10329-010-0230-6, PMID: 21165669
Keesing F Ostfeld RS. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc Natl Acad Sci USA. (2021) 118:e2023540118. doi: 10.1073/pnas.2023540118, PMID: 33820825
Young H Griffin RH Wood CL Nunn CL. Does habitat disturbance increase infectious disease risk for primates? Ecol Lett. (2013) 16:656–63. doi: 10.1111/ele.12094, PMID: 23448139
McFarlane R Sleigh A McMichael T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth. (2012) 9:24–35. doi: 10.1007/s10393-012-0763-9, PMID: 22526750
Davies TJ Pedersen AB. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc R Soc B Biol Sci. (2008) 275:1695–701. doi: 10.1098/rspb.2008.0284, PMID: 18445561
Chapman CA Gillespie TR Goldberg TL. Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions? Evol Anthropol. (2005) 14:134–44. doi: 10.1002/evan.20068
Peeters M Courgnaud V Abela B Auzel P Pourrut X Bibollet-Ruche F et al. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis. (2002) 8:451–7. doi: 10.3201/eid0805.010522, PMID: 11996677
Pourrut X Kumulungui B Wittmann T Moussavou G Délicat A Yaba P et al. The natural history of Ebola virus in Africa. Microbes Infect. (2005) 7:1005–14. doi: 10.1016/j.micinf.2005.04.006
Wolfe ND Escalante AA Karesh WB Kilbourn A Spielman A Lal AA. Wild primate populations in emerging infectious disease research: the missing link? Emerg Infect Dis. (1998) 4:149–58. doi: 10.3201/eid0402.980202, PMID: 9621185
Estrada A Garber PA Rylands AB Roos C Fernandez-Duque E Di Fiore A et al. Impending extinction crisis of the world’s primates: why primates matter. Sci Adv. (2023) 3:e1600946. doi: 10.1126/sciadv.1600946, PMID: 28116351
Engel GA Jones-Engel L. The role of Macaca fascicularis in infectious agent transmission In: Gumert MD Jones-Engel L Fuentes A, editors. Monkeys on the Edge: Ecology and Management of long-Tailed Macaques and Their Interface With Humans. Cambridge: Cambridge University Press (2011). 183–203.
Frias L MacIntosh AJJ. Threatened hosts, threatened parasites?: parasite diversity and distribution in red-listed primates In: Behi AM Teichroeb JA Malone N, editors. Primate Research and Conservation in the Anthropocene. Cambridge: Cambridge University Press (2019). 141–64.
Fernández D Kerhoas D Dempsey A Billany J McCabe G Argirova E. The current status of the world’s primates: mapping threats to understand priorities for primate conservation. Int J Primatol. (2022) 43:15–39. doi: 10.1007/s10764-021-00242-2, PMID: 34744218
Beisner BA Balasubramaniam KN Fernandez K Heagerty A Seil SK Atwill ER et al. Prevalence of enteric bacterial parasites with respect to anthropogenic factors among commensal rhesus macaques in Dehradun, India. Primates. (2016) 57:459–69. doi: 10.1007/s10329-016-0534-2, PMID: 27056264
Parathian HE McLennan MR Hill CM Frazão-Moreira A Hockings KJ. Breaking through disciplinary barriers: human–wildlife interactions and multispecies ethnography. Int J Primatol. (2018) 39:749–75. doi: 10.1007/s10764-018-0027-9, PMID: 30573938
Balasubramaniam KN Sueur C Huffman MA MacIntosh AJJ. Primate infectious disease ecology: insights and future directions at the human-macaque interface In: Li JH Sun L Kappeler P, editors. The Behavioral Ecology of the Tibetan Macaque. Fascinating Life Sciences. Springer. (2020). 249–84.
Daszak P Cunningham AA Hyatt AD. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science. (2000) 287:443–9. doi: 10.1126/science.287.5452.443
Morse SS Mazet JAK Woolhouse M Parrish CR Carroll D Karesh WB et al. Prediction and prevention of the next pandemic zoonosis. Lancet. (2012) 380:1956–65. doi: 10.1016/S0140-6736(12)61684-5, PMID: 23200504
Bicca-Marques JC (2017). "Urbanization (and primate conservation)" in The International Encyclopedia of Primatology. (eds.) Bezanson M MacKinnon K.C. Riley E Campbell CJ, Nekaris K.A.I., Estrada A et al. (Hoboken, NJ: Wiley), 1–5
Lappan S Malaivijitnond S Radhakrishna S Riley EP Ruppert N. The human–primate interface in the new Normal: challenges and opportunities for primatologists in the COVID-19 era and beyond. Am J Primatol. (2020) 82:e23176–12. doi: 10.1002/ajp.23176, PMID: 32686188
Hopkins ME Nunn CL. A global gap analysis of infectious agents in wild primates. Divers Distrib. (2007) 13:561–72. doi: 10.1111/j.1472-4642.2007.00364.x
Liu Z-J Qian X-K Hong M-H Zhang J-L Li D-Y Wang T-H et al. Global view on virus infection in non-human primates and implications for public health and wildlife conservation. Zool Res. (2021) 42:626–32. doi: 10.24272/j.issn.2095-8137.2021.080, PMID: 34410047
Nunn CL Altizer SM. The global mammal parasite database: an online resource for infectious disease records in wild primates. Evol Anthropol. (2005) 14:1–2. doi: 10.1002/evan.20041
McKinney T. A classification system for describing anthropogenic influence on nonhuman primate populations. Am J Primatol. (2015) 77:715–26. doi: 10.1002/ajp.22395, PMID: 25809676
Gotelli NJ Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett. (2001) 4:379–91. doi: 10.1046/j.1461-0248.2001.00230.x
Walther BA Cotgreave P Price RD Gregory RD Clayton DH. Sampling effort and parasite species richness. Parasitol Today. (1995) 11:306–10. doi: 10.1016/0169-4758(95)80047-6
Colwell RK Chao A Gotelli NJ Lin S-Y Mao CX Chazdon RL et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol. (2012) 5:3–21. doi: 10.1093/jpe/rtr044
Colwell RK (2009). EstimateS 8.2. 0.—Statistical estimation of species richness and shared species from samples. User’s guide and application. Storrs, CT: Department of Ecology and Evolutionary Biology, University of Connecticut.
Gamalo LE Dimalibot J Kadir KA Singh B Paller VG. Plasmodium knowlesi and other malaria parasites in long-tailed macaques from the Philippines. Malar J. (2019) 18:147–7. doi: 10.1186/s12936-019-2780-4, PMID: 31014342
Amir A Shahari S Liew JWK de Silva JR Khan MB Lai MY et al. Natural plasmodium infection in wild macaques of three states in peninsular Malaysia. Acta Trop. (2020) 211:105596. doi: 10.1016/j.actatropica.2020.105596, PMID: 32589995
Dissanaike AS Nelson P Garnham PCC. Two new malaria parasites, plasmodium cynomolgi ceylonensis subsp. nov. and plasmodium fragile sp. nov., from monkeys in Ceylon. Ceylon J Med Sci. (1965) 14:1–9.
Dixit J Zachariah APKS Sajesh PK Chandramohan B Shanmuganatham V Karanth KP. Reinvestigating the status of malaria parasite (plasmodium sp.) in Indian non-human primates. PLoS Negl Trop Dis. (2018) 12:e0006801. doi: 10.1371/journal.pntd.0006801, PMID: 30521518
Fungfuang W Udom C Tongthainan D Kadir KA Singh B. Malaria parasites in macaques in Thailand: stump-tailed macaques (Macaca arctoides) are new natural hosts for plasmodium knowlesi, plasmodium inui, plasmodium coatneyi and plasmodium fieldi. Malar J. (2020) 19:350. doi: 10.1186/s12936-020-03424-0, PMID: 33004070
Seethamchai S Putaporntip C Malaivijitnond S Cui L Jongwutiwes S. Malaria and Hepatocystis species in wild macaques, southern Thailand. Am J Trop Med Hyg. (2008) 78:646–53. doi: 10.4269/ajtmh.2008.78.646
Li MI Mailepessov D Vythilingam I Lee V Lam P Ng LC et al. Prevalence of simian malaria parasites in macaques of Singapore. PLoS Negl Trop Dis. (2021) 15:e0009110. doi: 10.1371/journal.pntd.0009110, PMID: 33493205
Narapakdeesakul D Pengsakul T Kaewparuehaschai M Thongsahuan S Moonmake S Lekcharoen P et al. Zoonotic simian malaria parasites in free-ranging Macaca fascicularis macaques and human malaria patients in Thailand, with a note on genetic characterization of recent isolates. Acta Trop. (2023) 248:107030. doi: 10.1016/j.actatropica.2023.107030, PMID: 37742788
Ruengket P Roytrakul S Tongthainan D Taruyanon K Sangkharak B Limudomporn P et al. Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand. PLoS One. (2023) 18:e0293579. doi: 10.1371/journal.pone.0293579, PMID: 37910477
Huang CC Ji DD Chiang YC Teng HJ Liu HJ Chang CD et al. Prevalence and molecular characterization of plasmodium inui among Formosan macaques (Macaca cyclopis) in Taiwan. J Parasitol. (2010) 96:8–15. doi: 10.1645/GE-2165.1, PMID: 19712012
Nada Raja T Hu TH Zainudin R Lee KS Perkins SL Singh B. Malaria parasites of long-tailed macaques in Sarawak, Malaysian Borneo: a novel species and demographic and evolutionary histories. BMC Evol Biol. (2018) 18:49. doi: 10.1186/s12862-018-1170-9, PMID: 29636003
Permana DH Hasmiwati SDA Rozi IE Syahrani L Setiadi W Irawati N et al. The potential for zoonotic malaria transmission in five areas of Indonesia inhabited by non-human primates. Parasit Vectors. (2023) 16:267. doi: 10.1186/s13071-023-05880-4, PMID: 37550692
Putaporntip C Jongwutiwes S Thongaree S Seethamchai S Grynberg P Hughes AL. Ecology of malaria parasites infecting southeast Asian macaques: evidence from cytochrome b sequences. Mol Ecol. (2010) 19:3466–76. doi: 10.1111/j.1365-294X.2010.04756.x, PMID: 20646216
Yusuf NHM Zulkefli J Jiram AI Vythilingam I Hisam SR Devi R et al. Plasmodium spp. in macaques, Macaca fascicularis, in Malaysia, and their potential role in zoonotic malaria transmission. Parasite. (2022) 29:32. doi: 10.1051/parasite/2022032, PMID: 35674419
Jeslyn WPS Huat TC Vernon L Irene LMZ Sung LK Jarrod LP et al. Molecular epidemiological investigation of plasmodium knowlesi in humans and macaques in Singapore. Vect Borne Zoo Dis. (2011) 11:131–5. doi: 10.1089/vbz.2010.0024, PMID: 20586605
Stark DJ Fornace KM Brock PM Abidin TR Gilhooly L Jalius C et al. Long-tailed macaque response to deforestation in a plasmodium knowlesi-endemic area. EcoHealth. (2019) 16:638–46. doi: 10.1007/s10393-019-01403-9, PMID: 30927165
Lee KS Divis PCS Zakaria SK Matusop A Julin RA Conway DJ et al. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. (2011) 7:e1002015. doi: 10.1371/journal.ppat.1002015, PMID: 21490952
Docampo R Merrick CJ. Plasmodium falciparum. Emerg Top Life Sci. (2017) 1:517–23. doi: 10.1042/ETLS20170099
Barber BE William T Grigg MJ Menon J Auburn S Marfurt J et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from plasmodium knowlesi and plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis. (2013) 56:383–97. doi: 10.1093/cid/cis902, PMID: 23087389
Weerasekara L Wijesooriya K Ranawana K Anupama T Rajapakse J. Gastrointestinal parasites of endemic and endangered free-ranging purple-faced leaf monkey (Semnopithecus vetulus) in Sri Lanka: effect of host group size and habitat type. Primates. (2021) 62:629–35. doi: 10.1007/s10329-021-00902-0, PMID: 33768415
Klaus A Zimmermann E Röper KM Radespiel U Nathan S Goossens B et al. Co-infection patterns of intestinal parasites in arboreal primates (proboscis monkeys, Nasalis larvatus) in Borneo. Int J Parasitol Parasit Wildlife. (2017) 6:320–9. doi: 10.1016/j.ijppaw.2017.09.005, PMID: 29988805
Kilbourn AM Karesh WB Wolfe ND Bosi EJ Cook RA Andau M. Health evaluation of free-ranging and semi-captive orangutans (Pongo pygmaeus pygmaeus) in Sabah, Malaysia. J Wildl Dis. (2003) 39:73–83. doi: 10.7589/0090-3558-39.1.73, PMID: 12685070
Malaivijitnond S Chaiyabutr N Urasopon N Hamada Y. Intestinal nematode parasites of long-tailed macaques (Macaca fascicularis) inhabiting some tourist attraction sites in Thailand. In Proceedings of the 32nd Congress on Science and Technology of Thailand, Bangkok, Thailand. (2006) (pp. 1–3).
Srivathsan A Ang A Vogler AP Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool. (2016) 13:17. doi: 10.1186/s12983-016-0150-4, PMID: 27103937
Sapkota B Adhikari RB Regmi GR Bhattarai BP Ghimire TR. Diversity and prevalence of gut parasites in urban macaques. Appl Sci Technol Ann. (2020) 1:34–41. doi: 10.3126/asta.v1i1.30270
Pumipuntu N. Detection for potentially zoonotic gastrointestinal parasites in long-tailed macaques, dogs and cattle at kosamphi forest park, Maha Sarakham. Vet Integr Sci. (2018) 16:69–77.
Hussain S Ram MS Kumar A Shivaji S Umapathy G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in southern India. PLoS One. (2013) 8:e0063685. doi: 10.1371/journal.pone.0063685, PMID: 23717465
Kuze N Kanamori T Malim TP Bernard H Zamma K Kooriyama T et al. Parasites found from the feces of Bornean orangutans in Danum Valley, Sabah, Malaysia, with a redescription of Pongobius hugoti and the description of a new species of Pongobius (Nematoda: Oxyuridae). J Parasitol. (2010) 96:954–60. doi: 10.1645/GE-2379.1, PMID: 20950104
Schurer JM Ramirez V Kyes P Tanee T Patarapadungkit N Thamsenanupap P et al. Long-tailed macaques (Macaca fascicularis) in urban landscapes: gastrointestinal parasitism and barriers for healthy coexistence in Northeast Thailand. Am J Trop Med Hyg. (2019) 100:357–64. doi: 10.4269/ajtmh.18-0241, PMID: 30628564
Thilakarathne SS Rajakaruna RS Fernando DD Rajapakse RPVJ Perera PK. Gastro-intestinal parasites in two subspecies of toque macaque (Macaca sinica) in Sri Lanka and their zoonotic potential. Vet Parasitol Reg Stud Rep. (2021) 24:100558. doi: 10.1016/j.vprsr.2021.100558, PMID: 34024374
Damrongsukij P Doemlim P Kusolsongkhrokul R Tanee T Petcharat P Siriporn B et al. One health approach of melioidosis and gastrointestinal parasitic infections from Macaca fascicularis to human at Kosumpee forest park, Maha Sarakham, Thailand. Infect Drug Resist. (2021) 14:2213–23. doi: 10.2147/IDR.S299797, PMID: 34163186
Frias L Hasegawa H Chua TH Sipangkui S Stark DJ Salgado-Lynn M et al. Parasite community structure in sympatric Bornean primates. Int J Parasitol. (2021) 51:925–33. doi: 10.1016/j.ijpara.2021.03.003, PMID: 33862059
Adrus M Zainudin R Ahamad M Jayasilan MA Abdullah MT. Gastrointestinal parasites of zoonotic importance observed in the wild, urban, and captive populations of non-human primates in Malaysia. J Med Primatol. (2019) 48:22–31. doi: 10.1111/jmp.12389, PMID: 30370934
Kumar S Sundararaj P Kumara HN Pal A Santhosh K Vinoth S. Prevalence of gastrointestinal parasites in bonnet macaque and possible consequences of their unmanaged relocations. PLoS One. (2018) 13:e0207495. doi: 10.1371/journal.pone.0207495, PMID: 30440026
Mul IF Paembonan W Singleton I Wich SA Van Bolhuis HG. Intestinal parasites of free-ranging, semicaptive, and captive Pongo abelii in Sumatra, Indonesia. Int J Primatol. (2007) 28:407–20. doi: 10.1007/s10764-007-9119-7
Zhang Q Liu K Luo J Lu J He H. Occurrence of selected zoonotic fecal pathogens and first molecular identification of Hafnia paralvei in wild Taihangshan macaques (Macaca mulatta tcheliensis) in China. Biomed Res Int. (2019) 2019:2494913. doi: 10.1155/2019/2494913, PMID: 31205937
Ekanayake DK Arulkanthan A Horadagoda NU Sanjeevani GKM Kieft R Gunatilake S et al. Prevalence of Cryptosporidium and other enteric parasites among wild non-human primates in Polonnaruwa, Sri Lanka. Am J Trop Med Hyg. (2006) 74:322–9. doi: 10.4269/ajtmh.2006.74.322
Zhu Y Ji H Li JH Xia DP Sun BH Xu YR et al. First report of the wild tibetan macaque (Macaca thibetana) as a new primate host of Gongylonema pulchrum with high incidence in China. J Anim Vet Adv. (2012) 11:4514–8. doi: 10.3923/javaa.2012.4514.4518
Wenz-Mücke A Sithithaworn P Petney TN Taraschewski H. Human contact influences the foraging behaviour and parasite community in long-tailed macaques. Parasitology. (2013) 140:709–18. doi: 10.1017/S003118201200203X, PMID: 23363557
Kumar S Kumara HN Santhosh K Sundararaj P. Prevalence of gastrointestinal parasites in lion-tailed macaque Macaca silenus in Central Western Ghats, India. Primates. (2019) 60:537–46. doi: 10.1007/s10329-019-00751-y, PMID: 31468227
Gillespie TR Barelli C Heistermann M. Effects of social status and stress on patterns of gastrointestinal parasitism in wild white-handed gibbons (Hylobates lar). Am J Phys Anthropol. (2013) 150:602–8. doi: 10.1002/ajpa.22232, PMID: 23440877
Adhikari A Koju NP Maharjan B Khanal L Upreti M Kyes RC. Gastro-intestinal parasites of urban rhesus macaques (Macaca mulatta) in the Kathmandu Valley, Nepal. Int J Parasitol Parasit Wildlife. (2023) 22:175–83. doi: 10.1016/j.ijppaw.2023.10.007, PMID: 37915770
Islam S Rahman MK Uddin MH Rahman MM Chowdhury MNU Hassan MM et al. Prevalence and diversity of gastrointestinal parasites in free-ranging rhesus macaques (Macaca mulatta) in different land gradients of Bangladesh. Am J Primatol. (2022) 84:e23345. doi: 10.1002/ajp.23345, PMID: 34783056
Kharismawan MYK Maula I Astuti P Setiawan A. Identification and prevalence of soil-transmitted helminth eggs in javan gibbon (Hylobates moloch) and javan langur (Trachypithecus auratus) at Petungkriyono Forest, Central Java, Indonesia. Biodiversitas. (2022) 23:4501–9. doi: 10.13057/biodiv/d230916
Muznebin F Khanum H Jaman MF Shafiullah AZM. Endo-parasitic infestation in captive and free-living rhesus macaques Macaca mulatta in Bangladesh. Biomed J Sci Tech Res. (2022) 40:32236–44. doi: 10.26717/BJSTR.2022.40.006528
Said SAT Vejayan J Zulkeffli NAM Agustar HK. Gastrointestinal parasites in Macaca fascicularis living in two urban areas of Malaysia. Malays J Sci. (2022) 41:10–21. doi: 10.22452/mjs.vol41no3.2
Sharma D Vatsya S Kumar RR Kumar S. Gastro-intestinal parasites in free ranging rhesus macaque (Macaca mulatta) in Tarai region of Uttarakhand, India. Pharma Innov J. (2022) 11:1170–3.
Wulandari SAM Perwitasari-Farajallah D Sulistiawati E. The gastrointestinal parasites in habituated group of Sulawesi black-crested macaque (Macaca nigra) in Tangkoko, North Sulawesi. J Trop Biodivers Biotechnol. (2022) 7:73044–13. doi: 10.22146/jtbb.73044
Kumar S Kumara HN Velankar AD Mishra PS Pal A Sundararaj P et al. Prevalence of gastrointestinal parasites in the Nicobar long-tailed macaque (Macaca fascicularis umbrosus) on the Nicobar Group of Islands, India. Curr Sci. (2022) 122:1199–208. doi: 10.18520/cs/v122/i10/1199-1208
Adrus M Zainuddin R Ahmad Khairi NH Ahamad M Abdullah MT. Helminth parasites occurrence in wild proboscis monkeys (Nasalis larvatus), endemic primates to Borneo Island. J Med Primatol. (2019) 48:357–63. doi: 10.1111/jmp.12437, PMID: 31486088
Fahrurozi S Hadi M Janah K Tirtasari C Atma S Dwi AC. Identification of gastrointestinal nematode parasites in wild javan lutung (Trachypithecus auratus) from the area of Lombok Island. Aust Vet Pract. (2020) 21:203–206.
Jaiswal AK Sudan V Kanojiya D Sachan A Shanker D. A pilot study on gastrointestinal parasites of monkeys (Macaca mulatta) of Mathura-Vrindavan areas. Ind J Vet Parasitol. (2014) 28:66–8.
Klaus A Strube C Röper KM Radespiel U Schaarschmidt F Nathan S et al. Fecal parasite risk in the endangered proboscis monkey is higher in an anthropogenically managed forest environment compared to a riparian rain forest in Sabah, Borneo. PLoS One. (2018) 13:e0195584. doi: 10.1371/journal.pone.0195584, PMID: 29630671
Labes EM Hegglin D Grimm F Nurcahyo W Harrison ME Bastian ML et al. Intestinal parasites of endangered orangutans (Pongo pygmaeus) in central and East Kalimantan, Borneo, Indonesia. Parasitology. (2010) 137:123–35. doi: 10.1017/S0031182009991120, PMID: 19765342
Tandan S Kshetri S Paudel S Dhakal P Kyes RC Khanal L. Prevalence of gastrointestinal helminth parasites in rhesus macaques and local residents in the central mid-hills of Nepal. Helminthologia. (2023) 60:327–35. doi: 10.2478/helm-2023-0037, PMID: 38222485
Tiwari S Reddy DM Pradheeps M Sreenivasamurthy GS Umapathy G. Prevalence and co-occurrence of gastrointestinal parasites in Nilgiri langur (Trachypithecus johnii) of fragmented landscape in Anamalai Hills, Western Ghats, India. Curr Sci. (2017) 113:2194–200. doi: 10.18520/cs/v113/i11/2194-2200
Dewit I Dittus WPJ Vercruysse J Harris EA Gibson DI. Gastro-intestinal helminths in a natural population of Macaca sinica and Presbytis spp. at Polonnaruwa, Sri Lanka. Primates. (1991) 32:391–5. doi: 10.1007/BF02382681
Albani A De Liberato C Wahid I Berrilli F Riley EP Cardeti G et al. Preliminary assessment of gastrointestinal parasites in two wild groups of endangered moor macaques (Macaca maura) from Sulawesi. Int J Primatol. (2019) 40:671–86. doi: 10.1007/s10764-019-00114-w
Huffman MA Nahallage CAD Hasegawa H Ekanayake S De Silva LDGG Athauda IRK. Preliminary survey of the distribution of four potentially zoonotic parasite species among primates in Sri Lanka. J Natl Sci Found. (2013) 41:319–26. doi: 10.4038/JNSFSR.V41I4.6246
Palmieri JR Purnomok Lee VH Dennis DT Marwoto HA. Parasites of the silvered leaf monkey, Presbytis cristatus Eschscholtz 1921, with a note on a Wuchereria-like nematode. J Parasitol. (1980) 66:170–1. doi: 10.2307/3280616, PMID: 6767831
Sricharern W Inpankaew T Kaewmongkol S Jarudecha T Inthong N. Molecular identification of Trichuris trichuria and Hymenolepsis diminuta in long-tailed macaques (Macaca fascicularis) in Lopburi. Vet World. (2021) 14:884–8. doi: 10.14202/vetworld.2021.884-888, PMID: 34083936
Dhakal DN Bhattarai BP Adhikari RB (2018). “Resource preference is the major determinant of gastrointestinal parasites prevalence in rhesus macaque (Macaca mulatta) in Chitwan-Annapurna landscape, Nepal” in Proceedings of International Biodiversity Congress. p. 154–158.
Hofmannová L Jirků M Řeháková M Kvičerová J. Two new species of Eimeria (Apicomplexa: Eimeriidae) in Philippine tarsier (Tarsius syrichta). Eur J Protistol. (2018) 66:77–85. doi: 10.1016/j.ejop.2018.08.003, PMID: 30179769
Zhu Y Li JH Xia DP Sun BH Xu YR Wang X et al. Potential pathogen transmission risk in non-human primate ecotourism: a case study at Mt. Life Sci J. (2013) 10:2754–9.
Jones-Engel L Engel GA Heidrich J Chalise M Poudel N Viscidi R et al. Temple monkeys and health implications of commensalism, Kathmandu, Nepal. Emerg Infect Dis. (2006) 12:900–6. doi: 10.3201/eid1206.060030, PMID: 16707044
Jones-Engel L Engel GA Schillaci MA Rompis A Putra A Suaryana KG et al. Primate-to-human retroviral transmission in Asia. Emerg Infect Dis. (2005) 11:1028–35. doi: 10.3201/eid1107.040957, PMID: 16022776
Feeroz MM Soliven K Small CT Engel GA Andreina Pacheco M Yee JL et al. Population dynamics of rhesus macaques and associated foamy virus in Bangladesh. Emerg Microbes Infect. (2013) 2:e29. doi: 10.1038/emi.2013.23, PMID: 26038465
Qi M Wang Q Wang Y Chen Y Hu C Yang W et al. Epidemiological survey and risk factor analysis of 14 potential pathogens in golden snub-nosed monkeys at Shennongjia National Nature Reserve, China. Pathogens. (2023) 12:1–16. doi: 10.3390/pathogens12030483, PMID: 36986405
Engel GA Jones-Engel L Schillaci MA Suaryana KG Putra A Fuentes A et al. Human exposure to herpesvirus B-seropositive macaques, Bali, Indonesia. Emerg Infect Dis. (2002) 8:789–95. doi: 10.3201/eid0808.010467, PMID: 12141963
Lee MH Rostal MK Hughes T Sitam F Lee CY Japning J et al. Macacine herpesvirus 1 in long-tailed macaques, Malaysia, 2009-2011. Emerg Infect Dis. (2015) 21:1107–13. doi: 10.3201/eid2107.140162, PMID: 26080081
Kaewchot S Tangsudjai S Sariya L Mongkolphan C Saechin A Sariwongchan R et al. Zoonotic pathogens survey in free-living long-tailed macaques in Thailand. Int J Vet Sci Med. (2022) 10:11–8. doi: 10.1080/23144599.2022.2040176, PMID: 35291581
Wolfe ND Kilbourn AM Karesh WB Rahman HA Bosi EJ Cropp BC et al. Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg. (2001) 64:310–6. doi: 10.4269/ajtmh.2001.64.310, PMID: 11463123
Tongthainan D Mongkol N Jiamsomboon K Suthisawat S Sanyathitiseree P Sukmak M et al. Seroprevalence of dengue, Zika, and chikungunya viruses in wild monkeys in Thailand. Am J Trop Med Hyg. (2020) 103:1228–33. doi: 10.4269/ajtmh.20-0057, PMID: 32588813
De Silva AM Dittus WPJ Amerasinghe PH Amerasinghe FP. Serologic evidence for an epizootic dengue virus infecting toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. Am J Trop Med Hyg. (1999) 60:300–6. doi: 10.4269/ajtmh.1999.60.300
Evans TS Aung O Cords O Coffey LL Wong T Weiss CM et al. Sylvatic transmission of chikungunya virus among nonhuman primates in Myanmar. Emerg Infect Dis. (2022) 28:2548–51. doi: 10.3201/eid2812.220893, PMID: 36417997
Lakhotia D Tun YM Mongkol N Likhit O Suthisawat S Mangmee S et al. A serosurvey of Japanese encephalitis virus in monkeys and humans living in proximity in Thailand. Viruses. (2023) 15:1125. doi: 10.3390/v15051125, PMID: 37243211
Peiris JS Dittus WP Ratnayake CB. Seroepidemiology of dengue and other arboviruses in a natural population of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. J Med Primatol. (1993) 22:240–5. doi: 10.1111/j.1600-0684.1993.tb00663.x, PMID: 8230174
Putra I Adi A Astawa INM Kardena IM Wandia IN Soma IG et al. First survey on seroprevalence of Japanese encephalitis in long-tailed macaques (Macaca fascicularis) in Bali, Indonesia. Vet World. (2022) 15:1341–6. doi: 10.14202/vetworld.2022.1341-1346, PMID: 35765485
Zhao W Zhou HH Ren GX Qiang Y Huang HC Lu G et al. Occurrence and potentially zoonotic genotypes of Enterocytozoon bieneusi in wild rhesus macaques (Macaca mulatta) living in Nanwan Monkey Island, Hainan, China: a public health concern. BMC Vet Res. (2021) 17:213. doi: 10.1186/s12917-021-02916-8, PMID: 34107958
Zhong Z Li W Deng L Song Y Wu K Tian Y et al. Multilocus genotyping of Enterocytozoon bieneusi derived from nonhuman primates in Southwest China. PLoS One. (2017) 12:e0176926. doi: 10.1371/journal.pone.0176926, PMID: 28498867
Shu F Song S Wei Y Li F Guo Y Feng Y et al. High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasit Vectors. (2022) 15:85. doi: 10.1186/s13071-022-05217-7, PMID: 35279196
Rivera WL Kanbara H. Detection of Entamoeba dispar DNA in macaque feces by polymerase chain reaction. Parasitol Res. (1999) 85:493–5. doi: 10.1007/s004360050583, PMID: 10344544
Ogawa K Yamaguchi K Suzuki M Tsubota T Ohya K Fukushi H. Genetic characteristics and antimicrobial resistance of Escherichia coli from Japanese macaques (Macaca fuscata) in rural Japan. J Wildl Dis. (2011) 47:261–70. doi: 10.7589/0090-3558-47.2.261, PMID: 21441178
Boonkusol D Thongyuan S Jangsuwan N Sanyathitiseree P. Antimicrobial resistance profiles in bacterial species isolated from fecal samples of free-ranging long-tailed macaques (Macaca fascicularis) living in Lopburi old town, Thailand. Vet World. (2020) 13:1397–403. doi: 10.14202/vetworld.2020.1397-1403, PMID: 32848316
Roberts MC Joshi PR Greninger AL Melendez D Paudel S Acharya M et al. The human clone ST22 SCCmec IV methicillin-resistant Staphylococcus aureus isolated from swine herds and wild primates in Nepal: is man the common source? FEMS Microbiol Ecol. (2018) 94:fiy05. doi: 10.1093/femsec/fiy052, PMID: 29668933
Chong CW Alkatheeri AHS Ali N Tay ZH Lee YL Paramasivam SJ et al. Association of antimicrobial resistance and gut microbiota composition in human and non-human primates at an urban ecotourism site. Gut Pathog. (2020) 12:14. doi: 10.1186/s13099-020-00352-x, PMID: 32175011
Roberts MC Joshi PR Monecke S Ehricht R Müller E Gawlik D et al. MRSA strains in Nepalese Rhesus macaques (Macaca mulatta) and their environment. Front Microbiol. (2019) 10:2505. doi: 10.3389/fmicb.2019.02505, PMID: 31827462
Roberts MC Joshi PR Monecke S Ehricht R Müller E Gawlik D et al. Staphylococcus aureus and methicillin resistant S. aureus in nepalese primates: resistance to antimicrobials, virulence, and genetic lineages. Antibiotics. (2020) 9:1–14. doi: 10.3390/antibiotics9100689, PMID: 33066007
Sato S Kabeya H Yoshino A Sekine W Suzuki K Tamate HB et al. Japanese macaques (Macaca fuscata) as natural reservoir of Bartonella quintana. Emerg Infect Dis. (2015) 21:2168–70. doi: 10.3201/eid2112.150632, PMID: 26584238
Sricharern W Kaewchot S Saengsawang P Kaewmongkol S Inpankaew T. Molecular detection of Bartonella quintana among Long-tailed macaques (Macaca fascicularis) in Thailand. Pathogens. (2021) 10:629. doi: 10.3390/pathogens10050629, PMID: 34069707
Sricharern W Kaewchot S Kaewmongkol S Inthong N Jarudecha T Rucksaken R et al. Detection and genetic characterization of "Candidatus Mycoplasma haemomacaque" infection among long-tailed macaques (Macaca fascicularis) in Thailand using broad-range nested polymerase chain reaction assay. Vet World. (2021) 14:943–8. doi: 10.14202/vetworld.2021.943-948
Meesawat S Warit S Hamada Y Malaivijitnond S. Prevalence of Mycobacterium tuberculosis complex among wild rhesus macaques and 2 subspecies of long-tailed macaques, Thailand, 2018-2022. Emerg Infect Dis. (2023) 29:551–60. doi: 10.3201/eid2903.221486, PMID: 36823033
Brotcorne F Fuentes A Wandia IN Beudels-Jamar RC Huynen MC. Changes in activity patterns and intergroup relationships after a significant mortality event in commensal long-tailed macaques (Macaca Fascicularis) in Bali, Indonesia. Int J Primatol. (2015) 36:548–66. doi: 10.1007/s10764-015-9841-5
Soedarmanto I Pasaribu FH Wibawan IWT Lämmler C. Identification and molecular characterization of serological group C streptococci isolated from diseased pigs and monkeys in Indonesia. J Clin Microbiol. (1996) 34:2201–4. doi: 10.1128/jcm.34.9.2201-2204.1996, PMID: 8862585
Salasia SI Wibawan IW Pasaribu FH Abdulmawjood A Lammler C. Persistent occurrence of a single Streptococcus equi subsp. zooepidemicus clone in the pig and monkey population in Indonesia. J Vet Sci. (2004) 5:263–5. doi: 10.4142/jvs.2004.5.3.263, PMID: 15365243
Hemida MG Ba Abduallah MM. The SARS-CoV-2 outbreak from a one health perspective. One Health. (2020) 10:100127. doi: 10.1016/j.onehlt.2020.100127, PMID: 32292814
Kurpiers LA Schulte-Herbrüggen B Ejotre I Reeder DM. Bushmeat and emerging infectious diseases: lessons from Africa. Problem Wildlife. (2015):507–51. doi: 10.1007/978-3-319-22246-2_24
Goldstein JE Budiman I Canny A Dwipartidrisa D. Pandemics and the human-wildlife interface in Asia: land use change as a driver of zoonotic viral outbreaks. Environ Res Lett. (2022) 17:063009. doi: 10.1088/1748-9326/ac74d4
Johnson CK Hitchens PL Pandit PS Rushmore J Evans TS Young CCW et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc R Soc B Biol Sci. (2020) 287:20192736. doi: 10.1098/rspb.2019.2736, PMID: 32259475
Cooper N Nunn CL. Identifying future zoonotic disease threats: where are the gaps in our understanding of primate infectious diseases? Evol Med Public Health. (2013) 2013:27–36. doi: 10.1093/emph/eot001, PMID: 24481184
Richard AF Goldstein SJ Dewar RE. Weed macaques: the evolutionary implications of macaque feeding ecology. Int J Primatol. (1989) 10:569–94. doi: 10.1007/BF02739365
Gumert MD San AM. Monkeys on the Edge: Ecology and Management of Long-Tailed Macaques and Their Interface With Humans. Cambridge: Cambridge University Press (2011).
Dela JDS. Impact of monkey-human relationships and habitat change on Semnopithecus vetulus nestor in human modified habitats. J Natl Sci Found. (2011) 39:365. doi: 10.4038/JNSFSR.V39I4.4144
Lee TM Sigouin A Pinedo-Vasquez M Nasi R. The Harvest of Wildlife for Bushmeat and Traditional Medicine in East, South and Southeast Asia. Bogor, Indonesia: Center for International Forestry Research (2014).
Long B Hoang M Hardcastle J Baltzer M Truyen T. Incorporating Primate Conservation into Provincial Policy and Practice. Hanoi: WWF Indochina (2004).
Smiley Evans T Myat TW Aung P Oo ZM Maw MT Toe AT et al. Bushmeat hunting and trade in Myanmar’s central teak forests: threats to biodiversity and human livelihoods. Glob Ecol Conserv. (2020) 22:e00889. doi: 10.1016/j.gecco.2019.e00889, PMID: 35574577
Cantlay JC Ingram DJ Meredith AL. A review of zoonotic infection risks associated with the wild meat trade in Malaysia. EcoHealth. (2017) 14:361–88. doi: 10.1007/s10393-017-1229-x, PMID: 28332127
Nekaris KAI Sheperd CR Starr CR Nijman V. Exploring cultural drivers for wildlife trade via an ethnoprimatological approach: a case study of slender and slow lorises (Loris and Nycticebus) in south and Southeast Asia. Am J Primatol. (2010) 72:877–86. doi: 10.1002/ajp.20842, PMID: 20806336
Nijman V Spaan D Rode-Margono EJ Wirdateti NKAI. Changes in the primate trade in Indonesian wildlife markets over a 25-year period: fewer apes and langurs, more macaques, and slow lorises. Am J Primatol. (2017) 79:e22517. doi: 10.1002/ajp.22517, PMID: 26713673
Howells ME Pruetz J Gillespie TR. Patterns of gastro-intestinal parasites and commensals as an index of population and ecosystem health: the case of sympatric western chimpanzees (Pan troglodytes verus) and guinea baboons (Papio hamadryas papio) at Fongoli, Senegal. Am J Primatol. (2011) 73:173–9. doi: 10.1002/ajp.20884, PMID: 20853397
McLennan MR Hasegawa H Bardi M Huffman MA. Gastrointestinal parasite infections and self-medication in wild chimpanzees surviving in degraded forest fragments within an agricultural landscape mosaic in Uganda. PLoS One. (2017) 12:e0180431. doi: 10.1371/journal.pone.0180431, PMID: 28692673
Davoust B Levasseur A Mediannikov O. Studies of nonhuman primates: key sources of data on zoonoses and microbiota. New Microbes New Infect. (2018) 26:S104–8. doi: 10.1016/j.nmni.2018.08.014, PMID: 30402252
Setchell JM. Ethics in primatology In: Studying Primates: How to Design, Conduct and Report Primatological Research. Ed. Joanna M. Setchell. Cambridge: Cambridge University Press (2019). 17–30.
Carrillo-Bilbao G Martin-Solano S Saegerman C. Zoonotic blood-borne pathogens in non-human primates in the neotropical region: a systematic review. Pathogens. (2021) 10:1009. doi: 10.3390/pathogens10081009, PMID: 34451473
Schilling AK Mazzamuto MV Romeo C. A review of non-invasive sampling in wildlife disease and Health Research: What's new? Animals. (2022) 12:1719. doi: 10.3390/ani12131719, PMID: 35804619
Wylezich C Papa A Beer M Höper D. A versatile sample processing workflow for metagenomic pathogen detection. Sci Rep. (2018) 8:13108. doi: 10.1038/s41598-018-31496-1, PMID: 30166611
Mokili JL Rohwer F Dutilh BE. Metagenomics and future perspectives in virus discovery. Curr Opin Virol. (2012) 2:63–77. doi: 10.1016/j.coviro.2011.12.004, PMID: 22440968
Blomström A-L. Viral metagenomics as an emerging and powerful tool in veterinary medicine. Vet Q. (2011) 31:107–14. doi: 10.1080/01652176.2011.604971, PMID: 22029881
Stumpf RM Gomez A Amato KR Yeoman CJ Polk JD Wilson BA et al. Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications. BIOC. (2016) 199:56–66. doi: 10.1016/j.biocon.2016.03.035
Blinkova O Victoria J Li Y Keele BF Sanz C Ndjango J-BN et al. Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol. (2010) 91:74–86. doi: 10.1099/vir.0.015446-0, PMID: 19759238
Ao Y Duan Z. Novel primate Bocaparvovirus species 3 identified in wild Macaca mulatta in China. Virol Sin. (2020) 35:34–42. doi: 10.1007/s12250-019-00163-8, PMID: 31552610
Estrada A Garber PA Mittermeier RA Wich S Gouveia S Dobrovolski R et al. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ. (2018) 6:e4869–57. doi: 10.7717/peerj.4869, PMID: 29922508
Junker J Petrovan SO Boonratana R Byler D Chapman CA Chetry D et al. A severe lack of evidence limits effective conservation of the world’s primates. Bioscience. (2020) 70:794–803. doi: 10.1093/biosci/biaa082, PMID: 32973409
Sodhi NS Liow LH. Improving conservation biology research in southeast asia. Conserv Biol. (2000) 14:1211–2. doi: 10.1046/j.1523-1739.2000.99416.x
Chapman CA Speirs ML Gillespie TR Holland T Austad KM. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. Am J Primatol. (2006) 68:397–409. doi: 10.1002/ajp.20233, PMID: 16534810
Gillespie TR Chapman CA Greiner EC. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J Appl Ecol. (2005) 42:699–707. doi: 10.1111/j.1365-2664.2005.01049.x
Moyes CL Shearer FM Huang Z Wiebe A Gibson HS Nijman V et al. Predicting the geographical distributions of the macaque hosts and mosquito vectors of plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors. (2016) 9:242–12. doi: 10.1186/s13071-016-1527-0, PMID: 27125995
Fornace KM Abidin TR Alexander N Brock P Grigg MJ Murphy A et al. Association between landscape factors and spatial patterns of plasmodium knowlesi infections in Sabah, Malaysia. Emerg Infect Dis. (2016) 22:201–9. doi: 10.3201/eid2202.150656, PMID: 26812373
Gibbs EPJ. The evolution of one health: a decade of progress and challenges for the future. Vet Rec. (2014) 174:85–91. doi: 10.1136/vr.g143, PMID: 24464377
Rahman MT Pal M Aregawi W. The roles of veterinary, medical and environmental professionals to achieve one health. J Adv Vet Anim Res. (2014) 1:144–58. doi: 10.5455/javar.2014.a27