Effect of an organic acid blend as an antibiotic alternative on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota in weaned piglets.
[en] This study was conducted to evaluate the effects of dietary organic acid blend on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota in weaned piglets compared with antibiotic growth promoters (AGPs). A total of 90 weaned crossbred barrows (24 ± 1 d of age) with an initial body weight of 7.40 kg were allocated into three experimental treatments. Each treatment consisted of six replicate pens, with five piglets housed in each pen. The dietary treatments included the basal diet (NC), the basal diet supplemented with antibiotics (PC), and the basal diet supplemented with organic acid blend (OA). On day 42, one piglet per pen was randomly selected for plasma and small intestinal sample collection. The results showed that dietary AGP significantly improved growth performance and reduced diarrhea incidence compared to the NC group (P < 0.05). Dietary OA tended to increase body weight on day 42 (P = 0.07) and average daily gain from days 0 to 42 (P = 0.06) and reduce diarrhea incidence (P = 0.05). Dietary OA significantly increased plasma catalase (CAT) activity and decreased the plasma concentration of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-8, and IL-6, which were accompanied by upregulated the relative mRNA abundance of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), and nuclear factor erythroid 2-related factor 2 (NRF2) in comparison to that in the NC group (P < 0.05). Moreover, pigs fed the OA diet significantly increased the ratio of villus height to crypt depth and upregulated the relative expression of zonula occludens-1 (ZO-1) and Claudin1 gene in the jejunum compared to the NC group (P < 0.05). Interestingly, dietary AGP or OA did not affect the fecal microbiota structure or volatile fatty acid content (P > 0.05). In conclusion, our results suggested that dietary OA supplementation could improve growth performance and antioxidant capacity and protect the intestinal barrier of weaned piglets, therefore, it has the potential to be considered as an alternative to AGP in the pig industry. [en] In the era of antibiotics prohibition, there is an urgent need to develop green and efficient alternatives to antibiotics in the current pig industry to mitigate the economic losses associated with antibiotic bans. Organic acids (OA) are a class of substances that have long been used as feed additives due to their bacteriostatic properties, the ability of reducing feed pH, increasing the activity of digestive enzymes, and other beneficial effects. This study was conducted to evaluate the effects of dietary OA on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota structure in weaned piglets. The results showed that OA supplementation can effectively improve the growth performance and intestinal health of weaned piglets. This study provides a reference for the application of OA as an alternative to antibiotics in weaned piglets.
Disciplines :
Agriculture & agronomy
Author, co-author :
Cai, Long ✱; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Zhao, Ying ✱; Université de Liège - ULiège > TERRA Research Centre ; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Chen, Wenning; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Li, Yanpin; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Han, Yanming; Selko Feed Additives, Amersfoort 3800, The Netherlands
Zhang, Bo; Selko Feed Additives, Amersfoort 3800, The Netherlands
Pineda, Lane; Selko Feed Additives, Amersfoort 3800, The Netherlands
Li, Xilong; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Jiang, Xianren; Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Effect of an organic acid blend as an antibiotic alternative on growth performance, antioxidant capacity, intestinal barrier function, and fecal microbiota in weaned piglets.
Alfa, M. J., D. Strang, P. S. Tappia, M. Graham, G. Van Domselaar, J. D. Forbes, V. Laminman, N. Olson, P. DeGagne, D. Bray, et al. 2018. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin. Nutr. 37:797–807. doi:10.1016/j.clnu.2017.03.025
Bian, Z., Q. Zhang, Y. Qin, X. Sun, L. Liu, H. Liu, L. Mao, Y. Yan, W. Liao, L. Zha, et al. 2023. Sodium butyrate inhibits oxidative stress and NF-κB/NLRP3 activation in dextran sulfate sodium salt-induced colitis in mice with involvement of the Nrf2 signaling pathway and mitophagy. Dig. Dis. Sci. 68:2981–2996. doi:10.1007/ s10620-023-07845-0
Cai, L., Y. P. Li, Z. X. Wei, X. L. Li, and X. R. Jiang. 2020. Effects of dietary gallic acid on growth performance, diarrhea incidence, intestinal morphology, plasma antioxidant indices, and immune response in weaned piglets. Anim. Feed Sci. Technol. 261:114391. doi:10.1016/j.anifeedsci.2020.114391
Cao, S. T., C. C. Wang, H. Wu, Q. H. Zhang, L. F. Jiao, and C. H. Hu. 2018. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets1. J. Anim. Sci. 96:1073–1083. doi:10.1093/jas/skx062
Chen, S., F. Chen, P. Kang, W. Leng, Y. Liu, D. Pi, X. Wang, J. Zhang, and H. Zhu. 2016. Fish oil enhances intestinal barrier function and inhibits corticotropin-releasing hormone/corticotropin-releasing hormone receptor 1 signalling pathway in weaned pigs after lipopolysaccharide challenge. Br. J. Nutr. 115:1947–1957. doi:10.1017/ S0007114516001100
Council, N. R. 2012. Nutrient requirements of swine: eleventh revised edition. Washington (DC): The National Academies Press.
Dai, D., K. Qiu, H. J. Zhang, S. G. Wu, Y. M. Han, Y. Y. Wu, G. H. Qi, and J. Wang. 2021. Organic Acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in broilers. Front. Microbiol. 11:61844. doi:10.3389/fmicb.2020.618144
Dai, D., G. Qi, J. Wang, H. Zhang, K. Qiu, Y. Han, Y. Wu, and S. Wu. 2022. Dietary organic acids ameliorate high stocking density stress-induced intestinal inflammation through the restoration of intestinal microbiota in broilers. J. Anim. Sci. Biotechnol. 13:124. doi:10.1186/s40104-022-00776-2
Diao, H., Z. Gao, B. Yu, P. Zheng, J. He, J. Yu, Z. Huang, D. Chen, and X. Mao. 2016. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. J. Anim. Sci. Biotechnol. 7:32. doi:10.1186/s40104-016-0091-y
Ferronato, G., and A. Prandini. 2020. Dietary supplementation of inorganic, organic, and fatty acids in pig: a review. Animals. 10:1740. doi:10.3390/ani10101740
Fournier, P. E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirel, H. Richet, C. Robert, S. Mangenot, C. Abergel, et al. 2006. Comparative genomics of multidrug resistance in acinetobacter baumannii. PLoS Genet. 2:e7. doi:10.1371/journal.pgen.0020007
Giannenas, I., C. P. Papaneophytou, E. Tsalie, I. Pappas, E. Triantafillou, D. Tontis, and G. A. Kontopidis. 2014. Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, ph in the digestive tract, intestinal microbiota and morphology. Asian-Australas. J. Anim. Sci. 27:225–236. doi:10.5713/ ajas.2013.13376
Han, Y. S., C. H. Tang, Q. Y. Zhao, T. F. Zhan, K. Zhang, Y. M. Han, and J. M. Zhang. 2018. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livestock Science. 216:210–218. doi:10.1016/j.livsci.2018.08.013
Han, Y., T. Zhan, Q. Zhao, C. Tang, K. Zhang, Y. Han, and J. Zhang. 2020. Effects of mixed organic acids and medium chain fatty acids as antibiotic alternatives on the performance, serum immunity, and intestinal health of weaned piglets orally challenged with Escherichia coli K88. Anim. Feed Sci. Technol. 269:114617. doi:10.1016/j.anifeedsci.2020.114617
Hedges, A. J., and A. H. Linton. 1988. Olaquindox resistance in the coliform flora of pigs and their environment: an ecological study. J. Appl. Bacteriol. 64:429–443. doi:10.1111/j.1365-2672.1988. tb05100.x
Hu, C. H., K. Xiao, Z. S. Luan, and J. Song. 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs1. J. Anim. Sci. 91:1094–1101. doi:10.2527/ jas.2012-5796
Jia, Z., K. Wang, Y. Duan, K. Hu, Y. Zhang, M. Wang, K. Xiao, S. Liu, Z. Pan, and X. Ding. 2022. Claudin1 decrease induced by 1,25-dihydroxy-vitamin D3 potentiates gefitinib resistance therapy through inhibiting AKT activation-mediated cancer stem-like properties in NSCLC cells. Cell Death Discov. 8:122. doi:10.1038/ s41420-022-00918-5
Jiang, X. R., A. Agazzi, A. Awati, F. Vitari, H. Bento, A. Ferrari, G. L. Alborali, M. Crestani, C. Domeneghini, and V. Bontempo. 2015a. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection. Anim. Feed Sci. Technol. 209:219–229. doi:10.1016/j.anifeedsci.2015.08.010
Jiang, X. R., A. Awati, A. Agazzi, F. Vitari, A. Ferrari, H. Bento, M. Crestani, C. Domeneghini, and V. Bontempo. 2015b. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal. 9:417–426. doi:10.1017/ S1751731114002444
Klunker, L. R., S. Kahlert, P. Panther, A. K. Diesing, N. Reinhardt, B. Brosig, S. Kersten, S. Dänicke, H. J. Rothkötter, and J. W. Kluess. 2013. Deoxynivalenol and E.coli lipopolysaccharide alter epithelial proliferation and spatial distribution of apical junction proteins along the small intestinal axis1. J. Anim. Sci. 91:276–285. doi:10.2527/jas.2012-5453
Kuang, Y., Y. Wang, Y. Zhang, Y. Song, X. Zhang, Y. Lin, L. Che, S. Xu, D. Wu, B. Xue, et al. 2015. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Anim. Feed Sci. Technol. 208:145–157. doi:10.1016/j.anifeedsci.2015.07.010
Lei, X. J., J. W. Park, D. H. Baek, J. K. Kim, and I. H. Kim. 2017. Feeding the blend of organic acids and medium chain fatty acids reduces the diarrhea in piglets orally challenged with enterotoxigenic Escherichia coli K88. Anim. Feed Sci. Technol. 224:46–51. doi:10.1016/j. anifeedsci.2016.11.016
Li, S., J. Zheng, K. Deng, L. Chen, X. L. Zhao, X. Jiang, Z. Fang, L. Che, S. Xu, B. Feng, et al. 2018. Supplementation with organic acids showing different effects on growth performance, gut morphology, and microbiota of weaned pigs fed with highly or less digestible diets. J. Anim. Sci. 96:3302–3318. doi:10.1093/jas/sky197
Liu, W., X. Luo, Y. Huang, F. Feng, and M. Zhao. 2023. Butyric-lauric acid structural lipid relieves liver inflammation and small intestinal microbial disturbance: In obese male C57BL/6 mice. Food Bioscience. 55:102944. doi:10.1016/j.fbio.2023.102944
Long, S. F., Y. T. Xu, L. Pan, Q. Q. Wang, C. L. Wang, J. Y. Wu, Y. Y. Wu, Y. M. Han, C. H. Yun, and X. S. Piao. 2018. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol. 235:23–32. doi:10.1016/j.anifeedsci.2017.08.018
Mahmud, M. R., C. Jian, M. K. Uddin, M. Huhtinen, A. Salonen, O. Peltoniemi, H. Venhoranta, and C. Oliviero. 2023. Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiol. Spectr. 11:e03744–e03722. doi:10.1128/ spectrum.03744-22
Minelli, A., I. Bellezza, C. Conte, and Z. Culig. 2009. Oxidative stress-related aging: A role for prostate cancer? Biochim. Biophys. Acta 1795:83–91. doi:10.1016/j.bbcan.2008.11.001
Monger, X. C., A. A. Gilbert, L. Saucier, and A. T. Vincent. 2021. Antibiotic resistance: from pig to meat. Antibiotics (Basel, Switzerland). 10:1209. doi:10.3390/antibiotics10101209
Mu, C., Y. Yang, Y. Su, E. G. Zoetendal, and W. Zhu. 2017. Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an early-life antibiotic intervention. Front. Microbiol. 8:797. doi:10.3389/ fmicb.2017.00797
Muaz, K., M. Riaz, S. Akhtar, S. Park, and A. Ismail. 2018. Antibiotic residues in chicken meat: global prevalence, threats, and decontamination strategies: a review. J. Food Prot. 81:619–627. doi:10.4315/0362-028X.JFP-17-086
Pluske, J. R. 2013. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J. Anim. Sci. Biotechnol. 4:1. doi:10.1186/2049-1891-4-1
Qi, R., J. Sun, X. Qiu, Y. Zhang, J. Wang, Q. Wang, J. Huang, L. Ge, and Z. Liu. 2021. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets. Sci. Rep. 11:11237. doi:10.1038/s41598-021-90881-5
Qin, S., and D. X. Hou. 2016. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol. Nutr. Food Res. 60:1731–1755. doi:10.1002/mnfr.201501017
Risley, C. R., E. T. Kornegay, M. D. Lindemann, C. M. Wood, and W. N. Eigel. 1993. Effect of feeding organic acids on gastrointestinal digesta measurements at various times postweaning in pigs challenged with enterotoxigenic Escherichia coli. Can. J. Anim. Sci. 73:931–940. doi:10.4141/cjas93-094
Sabour, S., S. A. Tabeidian, and G. Sadeghi. 2019. Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. Anim. Nutr. 5:156–162. doi:10.1016/j.aninu.2018.07.004
Tang, W., J. Wu, S. Jin, L. He, Q. Lin, F. Luo, X. He, Y. Feng, B. He, P. Bing, et al. 2020. Glutamate and aspartate alleviate testicular/ epididymal oxidative stress by supporting antioxidant enzymes and immune defense systems in boars. Sci. China: Life Sci. 63:116–124. doi:10.1007/s11427-018-9492-8
Tsiloyiannis, V. K., S. C. Kyriakis, J. Vlemmas, and K. Sarris. 2001. The effect of organic acids on the control of porcine post-weaning diarrhoea. Res. Vet. Sci. 70:287–293. doi:10.1053/rvsc.2001.0476
Van Goethem, M. W., R. Marasco, P. Y. Hong, and D. Daffonchio. 2024. The antibiotic crisis: on the search for novel antibiotics and resistance mechanisms. Microb. Biotechnol. 17:e14430. doi:10.1111/1751-7915.14430
Wang, D., J. Chen, H. Sun, W. Chen, and X. Yang. 2022a. MCFA alleviate H2O2-induced oxidative stress in AML12 cells via the ERK1/2/ Nrf2 pathway. Lipids 57:153–162. doi:10.1002/lipd.12339
Wang, H., W. Long, D. Chadwick, X. Zhang, S. Zhang, X. Piao, and Y. Hou. 2022b. Dietary acidifiers as an alternative to antibiotics for promoting pig growth performance: a systematic review and meta-analysis. Anim. Feed Sci. Technol. 289:115320. doi:10.1016/j. anifeedsci.2022.115320
Wei, X., K. A. Bottoms, H. H. Stein, L. Blavi, C. L. Bradley, J. Bergstrom, J. Knapp, R. Story, C. Maxwell, T. Tsai, et al. 2021. Dietary organic acids modulate gut microbiota and improve growth performance of nursery pigs. Microorganisms. 9:110. doi:10.3390/microorganisms9010110
Xu, Y. T., L. Liu, S. F. Long, L. Pan, and X. S. Piao. 2018. Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim. Feed Sci. Technol. 235:110–119. doi:10.1016/j.anifeedsci.2017.10.012
Xu, Y., L. Lahaye, Z. He, J. Zhang, C. Yang, and X. Piao. 2020. Micro-encapsulated essential oils and organic acids combination improves intestinal barrier function, inflammatory responses and microbiota of weaned piglets challenged with enterotoxigenic Escherichia coli F4 (K88+). Anim. Nutr. 6:269–277. doi:10.1016/j. aninu.2020.04.004
Xun, W., L. Shi, H. Zhou, G. Hou, T. Cao, and C. Zhao. 2015. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol. 27:46–52. doi:10.1016/j.intimp.2015.04.038
Xun, W., M. Ji, Z. Ma, T. Deng, W. Yang, G. Hou, L. Shi, and T. Cao. 2023. Dietary emodin alleviates lipopolysaccharide-induced intestinal mucosal barrier injury by regulating gut microbiota in piglets. Anim. Nutr. 14:152–162. doi:10.1016/j.aninu.2023.05.004
Yang, C., L. Zhang, G. Cao, J. Feng, M. Yue, Y. Xu, B. Dai, Q. Han, and X. Guo. 2018. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets. J. Anim. Sci. 97:133–143. doi:10.1093/jas/sky426
Zong, Q., K. Li, H. Qu, P. Hu, C. Xu, H. Wang, S. Wu, S. Wang, H. Y. Liu, D. Cai, et al. 2023. Sodium butyrate ameliorates deoxynivalenolinduced oxidative stress and inflammation in the porcine liver via NR4A2-mediated histone acetylation. J. Agric. Food Chem. 71:10427–10437. doi:10.1021/acs.jafc.3c02499