[en] Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system affecting over 2.5 million people worldwide. Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is a murine model that reproduces the progressive form of MS and serves as a reference model for studying virus-induced demyelination. Certain mouse strains such as SJL are highly susceptible to this virus and serve as a prototype strain for studying TMEV infection. Other strains such as SWR are also susceptible, but their disease course following TMEV infection differs from SJL's. The quantification of motor and behavioral deficits following the induction of TMEV-IDD could help identify the differences between the two strains. Motor deficits have commonly been measured with the rotarod apparatus, but a multicomponent assessment tool has so far been lacking. For that purpose, we present a novel way of quantifying locomotor deficits, gait alterations and behavioral changes in this well-established mouse model of multiple sclerosis by employing automated video analysis technology (The PhenoTyper, Noldus Information Technology). We followed 12 SJL and 12 SWR female mice and their mock-infected counterparts over a period of 9 months following TMEV-IDD induction. We demonstrated that SJL and SWR mice both suffer significant gait alterations and reduced exploration following TMEV infection. However, SJL mice also display an earlier and more severe decline in spontaneous locomotion, especially in velocity, as well as in overall activity. Maintenance behaviors such as eating and grooming are not affected in either of the two strains. The system also showed differences in mock-infected mice from both strains, highlighting an age-related decline in spontaneous locomotion in the SJL strain, as opposed to hyperactivity in the SWR strain. Our study confirms that this automated video tracking system can reliably track the progression of TMEV-IDD for 9 months. We have also shown how this system can be utilized for longitudinal phenotyping in mice by describing useful parameters that quantify locomotion, gait and behavior.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Djabirska, Iskra ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Delaval, Laetitia ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Tromme, Audrey ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Blomet, Joël; Prevor Research Laboratories, Valmondois 95760, France
Desmecht, Daniel ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Van Laere, Anne-Sophie ; Université de Liège - ULiège > Département de morphologie et pathologie (DMP) > Pathologie spéciale et autopsies
Language :
English
Title :
Longitudinal quantitative assessment of TMEV-IDD-induced MS phenotypes in two inbred mouse strains using automated video tracking technology.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abbadessa, G., Lavorgna, L., Miele, G., Mignone, A., Signoriello, E., Lus, G., Clerico, M., Sparaco, M., Bonavita, S., Assessment of multiple sclerosis disability progression using a wearable biosensor: A pilot study. J. Clin. Med., 10(6), 2021, 10.3390/jcm10061160.
Bass, J.S., Tuo, A.H., Ton, L.T., Jankovic, M.J., Kapadia, P.K., Schirmer, C., Krishnan, V., On the digital psychopharmacology of valproic acid in mice. Front. Neurosci., 14, 2020, 10.3389/fnins.2020.594612.
Bieber, A.J., Ure, D.R., Rodriguez, M., Genetically dominant spinal cord repair in a murine model of chronic progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 64:1 (2005), 46–57, 10.1093/jnen/64.1.46.
Bradshaw, Michael J., Farrow, Samantha, Motl, Robert W., Chitnis, Tanuja, Wearable biosensors to monitor disability in multiple sclerosis. Neurology 7:4 (2017), 354–362 http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617843638%0Adoi:10.1212/CPJ.0000000000000382.
Brinkmeyer-Langford, C.L., Rech, R., Amstalden, K., Kochan, K.J., Hillhouse, A.E., Young, C., Welsh, C.J., Threadgill, D.W., Host genetic background influences diverse neurological responses to viral infection in mice. Sci. Rep. 7:1 (2017), 1–17, 10.1038/s41598-017-12477-2.
Brooks, S.P., Dunnett, S.B., Tests to assess motor phenotype in mice: A user's guide. Nat. Rev. Neurosci., 10(7), 2009, 10.1038/nrn2652.
Buddeberg, B.S., Kerschensteiner, M., Merkler, D., Stadelmann, C., Schwab, M.E., Behavioral testing strategies in a localized animal model of multiple sclerosis. J. Neuroimmunol., 153(1–2), 2004, 10.1016/j.jneuroim.2004.05.006.
Cisbani, G., Poggini, S., Laflamme, N., Pons, V., Tremblay, M.È., Branchi, I., Rivest, S., The Intellicage system provides a reproducible and standardized method to assess behavioral changes in cuprizone-induced demyelination mouse model. Behav. Brain Res., 400, 2021, 10.1016/j.bbr.2020.113039.
Crawley, J.N., Behavioral phenotyping of rodents. Compar. Med., 53(2), 2003.
Dal Canto, M.C., Lipton, H.L., Multiple sclerosis. Animal model: Theiler's virus infection in mice. Am. J. Pathol., 88(2), 1977.
Denic, A., Johnson, A.J., Bieber, A.J., Warrington, A.E., Rodriguez, M., Pirko, I., The relevance of animal models in multiple sclerosis research. Pathophysiology, 18(1), 2011, 10.1016/j.pathophys.2010.04.004.
Dumont, M., Behavioral phenotyping of mouse models of neurodegeneration. Methods Mol. Biol., 793, 2011, 10.1007/978-1-61779-328-8_15.
Eldridge, R., Osorio, D., Amstalden, K., Edwards, C., Young, C.R., Cai, J.J., Konganti, K., Hillhouse, A., Threadgill, D.W., Welsh, C.J., Brinkmeyer-Langford, C., Antecedent presentation of neurological phenotypes in the collaborative cross reveals four classes with complex sex-dependencies. Sci. Rep., 10(1), 2020, 10.1038/s41598-020-64862-z.
Gilli, F., Royce, D.B., Pachner, A.R., Measuring progressive neurological disability in a mouse model of multiple sclerosis. J. Vis. Exp., 2016(117), 2016, 10.3791/54616.
Grieco, F., Bernstein, B.J., Biemans, B., Bikovski, L., Burnett, C.J., Cushman, J.D., van Dam, E.A., Fry, S.A., Richmond-Hacham, B., Homberg, J.R., Kas, M.J.H., Kessels, H.W., Koopmans, B., Krashes, M.J., Krishnan, V., Logan, S., Loos, M., McCann, K.E., Parduzi, Q., Noldus, L.P.J.J., Measuring behavior in the home cage: study design, applications, challenges, and perspectives. Front. Behav. Neurosci., 15, 2021, 10.3389/fnbeh.2021.735387.
Haynell, A., Marklund, N., Structured evaluation of rodent behavioral tests used in drug discovery research. Front. Behav. Neurosci., 8, 2014, 252, 10.3389/fnbeh.2014.00252.
Johnson, R.R., Prentice, T.W., Bridegam, P., Young, C.R., Steelman, A.J., Welsh, T.H., Welsh, C.J.R., Meagher, M.W., Social stress alters the severity and onset of the chronic phase of Theiler's virus infection. J. Neuroimmunol., 175(1–2), 2006, 10.1016/j.jneuroim.2006.02.014.
Karmakar, M., Pérez Gómez, A.A., Carroll, R.J., Lawley, K.S., Amstalden, K.A.Z., Welsh, C.J., Threadgill, D.W., Brinkmeyer-Langford, C., Baseline gait and motor function predict long-term severity of neurological outcomes of viral infection. Int. J. Mol. Sci., 24(3), 2023, 10.3390/ijms24032843.
Kingwell, E., Marriott, J.J., Jetté, N., Pringsheim, T., Makhani, N., Morrow, S.A., Fisk, J.D., Evans, C., Béland, S.G., Kulaga, S., Dykeman, J., Wolfson, C., Koch, M.W., Marrie, R.A., Incidence and prevalence of multiple sclerosis in Europe: A systematic review. BMC Neurol., 13, 2013, 10.1186/1471-2377-13-128.
Lindahl, K.F., On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics, 46(1), 1997, 10.1007/s002510050242.
McGavern, D.B., Zoecklein, L., Drescher, K.M., Rodriguez, M., Quantitative assessment of neurologic deficits in a chronic progressive murine model of CNS demyelination. Exp. Neurol., 158(1), 1999, 10.1006/exnr.1999.7082.
McGavern, D.B., Murray, P.D., Rivera-Quiñones, C., Schmelzer, J.D., Low, P.A., Rodriguez, M., Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following demyelination in a chronic inflammatory model of multiple sclerosis. Brain, 123(3), 2000, 10.1093/brain/123.3.519.
McGavern, D.B., Zoecklein, L., Sathornsumetee, S., Rodriguez, M., Assessment of hindlimb gait as a powerful indicator of axonal loss in a murine model of progressive CNS demyelination. Brain Res., 877(2), 2000, 10.1016/S0006-8993(00)02710-4.
Mestre, L., Alonso, G., Feliú, A., Mecha, M., Martín, C., Villar, L.M., Guaza, C., Aging and neuroinflammation: changes in immune cell responses, axon integrity, and motor function in a viral model of progressive multiple sclerosis. Aging Cell, 20(9), 2021, 10.1111/acel.13440.
Milo, R., Kahana, E., Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun. Rev., 9(5), 2010, 10.1016/j.autrev.2009.11.010.
Nicholson, S.M., Jokinen, D.M., Dal Canto, M.C., Kim, B.S., Melvold, R.W., Genetic analysis of susceptibility to Theiler's murine encephalomyelitis virus-induced demyelinating disease in the SWR strain. J. Neuroimmunol., 59(1–2), 1995, 10.1016/0165-5728(95)00020-3.
Oleszak, E.L., Chang, J.R., Friedman, H., Katsetos, C.D., Platsoucas, C.D., Theiler's virus infection: A model for multiple sclerosis. Clin. Microbiol. Rev. 17:1 (2004), 174–207, 10.1128/CMR.17.1.174-207.2004.
Palumbo, S., Pellegrini, S., Experimental in vivo models of multiple sclerosis: state of the art. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis, 2017, 10.15586/codon.multiplesclerosis.2017.ch11.
Patrikios, P., Stadelmann, C., Kutzelnigg, A., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P.S., Brück, W., Lucchinetti, C., Lassmann, H., Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 129(12), 2006, 10.1093/brain/awl217.
Paz Soldán, M.M., Raman, M.R., Gamez, J.D., Lohrey, A.K., Chen, Y., Pirko, I., Johnson, A.J., Correlation of brain atrophy, disability, and spinal cord atrophy in a murine model of multiple sclerosis. J. Neuroimaging, 25(4), 2015, 10.1111/jon.12250.
Procaccini, C., De Rosa, V., Pucino, V., Formisano, L., Matarese, G., Animal models of multiple sclerosis. Eur. J. Pharmacol. 759 (2015), 182–191 Elsevier B.V. https://doi.org/10.1016/j.ejphar.2015.03.042.
Richardson, C.A., The power of automated behavioural homecage technologies in characterizing disease progression in laboratory mice: A review. Appl. Anim. Behav. Sci., 2015, 10.1016/j.applanim.2014.11.018.
Robinson, L., Riedel, G., Comparison of automated home-cage monitoring systems: emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J. Neurosci. Methods, 2014, 10.1016/j.jneumeth.2014.06.013.
Shahi, S.K., Freedman, S.N., Dahl, R.A., Karandikar, N.J., Mangalam, A.K., Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system. Sci. Rep., 9(1), 2019, 10.1038/s41598-019-55713-7.
Sheridan, G.K., Dev, K.K., Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. Sci. Rep., 4, 2014, 10.1038/srep05051.
Timotius, I.K., Roelofs, R.F., Richmond-Hacham, B., Noldus, L.P.J.J., von Hörsten, S., Bikovski, L., CatWalk XT gait parameters: a review of reported parameters in pre-clinical studies of multiple central nervous system and peripheral nervous system disease models. Front. Behav. Neurosci., 17, 2023, 10.3389/fnbeh.2023.1147784.
Tsunoda, I., Fujinami, R.S., Neuropathogenesis of theiler's murine encephalomyelitis virus infection, an animal model for multiple sclerosis. J. NeuroImmune Pharmacol. 5:3 (2010), 355–369, 10.1007/s11481-009-9179-x.
Voikar, V., Gaburro, S., Three pillars of automated home-cage phenotyping of mice: novel findings, refinement, and reproducibility based on literature and experience. Front. Behav. Neurosci., 14, 2020, 10.3389/fnbeh.2020.575434.
Walter, J., Mende, J., Hutagalung, S., Grutza, M., Younsi, A., Zheng, G., Unterberg, A.W., Zweckberger, K., Focal lesion size poorly correlates with motor function after experimental traumatic brain injury in mice. PLoS One, 17(3 March), 2022, 10.1371/journal.pone.0265448.
Zhu, Q., Song, J., Chen, J.Y., Yuan, Z., Liu, L., Xie, L.M., Liao, Q., Ye, R.D., Chen, X., Yan, Y., Tan, J., Heng Tan, C.S., Li, M., Lu, J.H., Corynoxine B targets at HMGB1/2 to enhance autophagy for α-synuclein clearance in fly and rodent models of Parkinson's disease. Acta Pharm. Sin. B, 2023, 10.1016/j.apsb.2023.03.011.
https://mousebehavior.org/active-behavior/.
https://mousebehavior.org/maintenance-behavior.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.