Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: a solution for arsenic and cadmium pollution in paddy soils
Zhang, Ting; Sun, Yifei; Parikh, Sanjai J.et al.
2024 • In Journal of Hazardous Materials, p. 135244
Zhang, Ting ✱; Université de Liège - ULiège > TERRA Research Centre
Sun, Yifei ✱
Parikh, Sanjai J.
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Garland, Gina
Huo, Lijuan
Zhang, Nan
Shan, Hong
Zeng, Xibai
Su, Shiming
✱ These authors have contributed equally to this work.
Language :
English
Title :
Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: a solution for arsenic and cadmium pollution in paddy soils
Khan, S., Naushad, M., Lima, E.C., Zhang, S., Shaheen, S.M., Rinklebe, J., Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–a review. J Hazard Mater, 417, 2021, 126039.
National Toxicology Program (NTP). 2000. Tenth Report on Carcinogens. Department of Health and Human Services, Research Triangle Park, III-42–III-44.
International Agency for Research on Cancer (IARC). 2009. IARC Monographs on the identification of carcinogenic hazards to humans. < 〈https://monographs.iarc.who.int/list-of-classifications〉>.
Zhao, D., Wang, P., Zhao, F.J., Dietary cadmium exposure, risks to human health and mitigation strategies. Crit Rev Environ Sci Technol 53:8 (2023), 939–963.
Smith, A.H., Lingas, E.O., Rahman, M., Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:9 (2000), 1093–1103.
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J.O., He, Y., Zhang, Y., et al. Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng, 10(1), 2022, 106502.
Zhao, F.J., Zhu, Y.G., Meharg, A.A., Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:9 (2013), 3957–3966.
Zheng, M.Z., Li, G., Sun, G.X., Shim, H., Cai, C., Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 365 (2013), 227–238.
Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., Katou, H., Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50:8 (2016), 4178–4185.
Afzal, M., Yu, M., Tang, C., Zhang, L., Muhammad, N., Zhao, H., et al. The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environ Int 129 (2019), 451–460.
Yin, Y., Wang, Y., Ding, C., Zhou, Z., Tang, X., He, L., et al. Impact of iron and sulfur cycling on the bioavailability of cadmium and arsenic in co-contaminated paddy soil. J Hazard Mater, 465, 2024, 133408.
Jiku, M.A.S., Zeng, X., Li, L., Li, L., Zhang, Y., Huo, L., et al. Soil ridge cultivation maintains grain As and Cd at low levels and inhibits As methylation by changing arsM-harboring bacterial communities in paddy soils. J Hazard Mater, 429, 2022, 128325.
Suda, A., Makino, T., Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma 270 (2016), 68–75.
Wang, Z., Liu, X., Liang, X., Dai, L., Li, Z., Liu, R., et al. Flooding-drainage regulate the availability and mobility process of Fe, Mn, Cd, and As at paddy soil. Sci Total Environ, 817, 2022, 152898.
Huang, H., Chen, H.P., Kopittke, P.M., Kretzschmar, R., Zhao, F.J., Wang, P., The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage. Environ Sci Technol 55:3 (2021), 1750–1758.
Roy, M., Giri, A.K., Dutta, S., Mukherjee, P., Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75 (2015), 180–198.
Chen, C., Li, L., Huang, K., Zhang, J., Xie, W.Y., Lu, Y., et al. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. ISME J 13:10 (2019), 2523–2535.
Ninin, J.M.L., Muehe, E.M., Kölbl, A., Mori, A.H., Nicol, A., Gilfedder, B., et al. Changes in arsenic mobility and speciation across a 2000-year-old paddy soil chronosequence. Sci Total Environ, 908, 2024, 168351.
Zhang, M., Kolton, M., Häggblom, M.M., Sun, X., Yu, K., He, B., et al. Anaerobic ammonium oxidation coupled to arsenate reduction, a novel biogeochemical process observed in arsenic-contaminated paddy soil. Geochim Et Cosmochim Acta 335 (2022), 11–22.
Zhang, M.M., Alves, R.J., Zhang, D.D., Han, L.L., He, J.Z., Zhang, L.M., Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biol Biochem 112 (2017), 77–89.
Wang, C., Huang, Y., Zhang, C., Zhang, Y., Yuan, K., Xue, W., et al. Inhibition effects of long-term calcium-magnesia phosphate fertilizer application on Cd uptake in rice: Regulation of the iron-nitrogen coupling cycle driven by the soil microbial community. J Hazard Mater, 416, 2021, 125916.
Yang, Y., Rao, X., Zhang, X., Liu, M., Fu, Q., Zhu, J., et al. Effect of P/As molar ratio in soil porewater on competitive uptake of As and P in As sensitive and tolerant rice genotypes. Sci Total Environ, 797, 2021, 149185.
Zhao, F.J., Wang, P., Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446 (2020), 1–21.
Zhang, T., Jiku, M.A.S., Li, L., Ren, Y., Li, L., Zeng, X., et al. Soil ridging combined with biochar or calcium-magnesium-phosphorus fertilizer application: Enhanced interaction with Ca, Fe and Mn in new soil habitat reduces uptake of as and Cd in rice. Environ Pollut, 2023, 121968.
Zhang, L.Z., Xing, S.P., Huang, F.Y., Xiu, W., Rensing, C., Zhao, Y., et al. Metabolic coupling of arsenic, carbon, nitrogen, and sulfur in high arsenic geothermal groundwater: Evidence from molecular mechanisms to community ecology. Water Res, 249, 2024, 120953.
Aryal, B., Gurung, R., Camargo, A.F., Fongaro, G., Treichel, H., Mainali, B., et al. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. Environ Pollut, 2022, 120272.
Schaeffer, S.M., Homyak, P.M., Boot, C.M., Roux-Michollet, D., Schimel, J.P., Soil carbon and nitrogen dynamics throughout the summer drought in a California annual grassland. Soil Biol Biochem 115 (2017), 54–62.
Han, L., Qin, H., Wang, J., Yao, D., Zhang, L., Guo, J., et al. Immediate response of paddy soil microbial community and structure to moisture changes and nitrogen fertilizer application. Front Microbiol, 14, 2023, 1130298.
Weitao, L.I., Meng, W.U., Ming, L.I.U., Jiang, C., Xiaofen, C.H.E.N., Kuzyakov, Y., et al. Responses of soil enzyme activities and microbial community composition to moisture regimes in paddy soils under long-term fertilization practices. Pedosphere 28:2 (2018), 323–331.
Liu, H., Qin, S., Li, Y., Zhao, P., Nie, Z., Liu, H., Comammox Nitrospira and AOB communities are more sensitive than AOA community to different fertilization strategies in a fluvo-aquic soil. Agric, Ecosyst Environ, 342, 2023, 108224.
Mohapatra, M., Yadav, R., Rajput, V., Dharne, M.S., Rastogi, G., Metagenomic analysis reveals genetic insights on biogeochemical cycling, xenobiotic degradation, and stress resistance in mudflat microbiome. J Environ Manag, 292, 2021, 112738.
Chen, C., Shen, Y., Li, Y., Zhang, W., Zhao, F.J., Demethylation of the antibiotic methylarsenite is coupled to denitrification in anoxic paddy soil. Environ Sci Technol 55:22 (2021), 15484–15494.
Maguffin, S.C., Abu-Ali, L., Tappero, R.V., Pena, J., Rohila, J.S., McClung, A.M., et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochim Et Cosmochim Acta 276 (2020), 50–69.
Xue, S., Jiang, X., Wu, C., Hartley, W., Qian, Z., Luo, X., et al. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system. Environ Pollut, 260, 2020, 114010.
Shi, S., Wu, Q., Zhu, Y., Fan, Z., Rensing, C., Liu, H., et al. Risk assessment of using phosphate and calcium fertilisers for continuously flooded rice cultivation in a soil co-contaminated with cadmium and antimony. Crop Pasture Sci 73:5 (2022), 585–598.
ur Rehman, M.Z., Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M.F., et al. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ Pollut 227 (2017), 560–568.
Xu, D.M., Fu, R.B., Mechanistic insight into the release behavior of arsenic (As) based on its geochemical fractions in the contaminated soils around lead/zinc (Pb/Zn) smelters. J Clean Prod, 363, 2022, 132348.
Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., Van Vark, W., Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:9-10 (2000), 1299–1396.
Yan, M., Zeng, X., Wang, J., Meharg, A.A., Meharg, C., Tang, X., et al. Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils. J Hazard Mater, 388, 2020, 121795.
Cruz, S.M., Schmidt, L., Dalla Nora, F.M., Pedrotti, M.F., Bizzi, C.A., Barin, J.S., et al. Microwave-induced combustion method for the determination of trace and ultratrace element impurities in graphite samples by ICP-OES and ICP-MS. Microchem J 123 (2015), 28–32.
Gustafsson, J.P., Visual MINTEQ (version 3.1). Department of Land and Water Resources Engineering. R Inst Technol: Stockh, Swed, 2020.
Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:10 (2013), 996–998.
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:16 (2007), 5261–5267.
Santos-Medellín, C., Liechty, Z., Edwards, J., Nguyen, B., Huang, B., Weimer, B.C., et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nat Plants 7:8 (2021), 1065–1077.
Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol 57:1 (1995), 289–300.
Ringle, Christian M., Wende, Sven, & Becker, Jan-Michael. (2022). SmartPLS 4. Oststeinbek: SmartPLS. < 〈https://www.smartpls.com〉>.
Khalid, S., Shahid, M., Alothman, Z.A., Al-Kahtani, A.A., Murtaza, B., Dumat, C., Predicting chemical speciation of metals in soil using Visual Minteq. Soil Ecol Lett, 5(3), 2023, 220162.
Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., Christie, P., Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. J Environ Sci 27 (2015), 225–231.
Neukirchen, S., Pereira, I.A., Sousa, F.L., Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction. ISME J 17:10 (2023), 1680–1692.
Wakao, N., Furusaka, C., Distribution of sulfate-reducing bacteria in paddy-field soil. Soil Sci Plant Nutr 19:1 (1973), 47–52.
Huang, H., Lv, Y., Tian, K., Shen, Y., Zhu, Y., Lu, H., et al. Influence of sulfate reducing bacteria cultured from the paddy soil on the solubility and redox behavior of Cd in a polymetallic system. Sci Total Environ, 901, 2023, 166369.
Li, H., Li, Z., Huang, L., Mao, X., Dong, Y., Fu, S., et al. Environmental factors influence the effects of biochar on the bioavailability of Cd and Pb in soil under flooding condition. Water Air Soil Pollut, 234(2), 2023, 100.
Luo, W., Yang, S., Khan, M.A., Ma, J., Xu, W., Li, Y., et al. Mitigation of Cd accumulation in rice with water management and calcium-magnesium phosphate fertilizer in field environment. Environ Geochem Health 42 (2020), 3877–3886.
Wang, X., Xie, G.J., Tian, N., Dang, C.C., Cai, C., Ding, J., et al. Anaerobic microbial manganese oxidation and reduction: a critical review. Sci Total Environ, 822, 2022, 153513.
Tebo, B.M., Manganese (II) oxidation in the suboxic zone of the Black Sea. Deep Sea Res Part A Oceanogr Res Pap 38 (1991), S883–S905.
Learman, D.R., Hansel, C.M., Comparative proteomics of Mn (II)‐oxidizing and non‐oxidizing R oseobacter clade bacteria reveal an operative manganese transport system but minimal Mn (II)‐induced expression of manganese oxidation and antioxidant enzymes. Environ Microbiol Rep 6:5 (2014), 501–509.
Wang, M., Chen, S., Shi, H., Liu, Y., Redox dependence of manganese controls cadmium isotope fractionation in a paddy soil-rice system under unsteady pe+ pH conditions. Sci Total Environ, 806, 2022, 150675.
Matsushita, S., Komizo, D., Cao, L.T.T., Aoi, Y., Kindaichi, T., Ozaki, N., et al. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. Water Res 130 (2018), 224–233.
Quan, T.A.N.G., Yongqiu, X.I.A., Chaopu, T.I., Jun, S.H.A.N., Wei, Z.H.O.U., Chenglin, L.I., et al. Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere 33:3 (2023), 407–420.
Zhao, H., Yu, L., Yu, M., Afzal, M., Dai, Z., Brookes, P., et al. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil. J Hazard Mater, 390, 2020, 121631.
Liu, J., Guo, Y., Gu, H., Liu, Z., Hu, X., Yu, Z., et al. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. ISME J 17:11 (2023), 1872–1883.
Zhen, Z., Li, G., Chen, Y., Wei, T., Li, H., Huang, F., et al. Accelerated nitrification and altered community structure of ammonia-oxidizing microorganisms in the saline-alkali tolerant rice rhizosphere of coastal solonchaks. Appl Soil Ecol, 189, 2023, 104978.
Blaud, A., van der Zaan, B., Menon, M., Lair, G.J., Zhang, D., Huber, P., et al. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size. Appl Soil Ecol 125 (2018), 1–11.
Matusik, J., Bajda, T., Manecki, M., Immobilization of aqueous cadmium by addition of phosphates. J Hazard Mater 152:3 (2008), 1332–1339.