No full text
Contribution to collective works (Parts of books)
Mitigation of Alkali-Silica Reaction Through Carbonation of Recycled Concrete Aggregates
Grigoletto, Sophie; Hubert, Julien; Duchesne, J. et al.
2024In RILEM Bookseries
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
alkali-silica reaction (ASR); carbonation; expansion; reactivity; Recycled Concrete Aggregates (RCA); Civil and Structural Engineering; Building and Construction; Mechanics of Materials
Abstract :
[en] Concrete waste management has become more and more challenging, especially in large cities, encouraging the use of recycled concrete aggregates (RCA). But their mechanical performances are generally lower, limiting their use to non-structural applications. Durability of recycled concrete can also be compromised, specifically if the original concrete is affected by a specific pathology, such as alkali-silica reaction (ASR) which could induce a secondary expansion. In order to prevent water-swelling gel formation, RCA are submitted to carbonation to reduce the quantity of alkali hydroxides and the mobility of the alkali ions in the cement paste. Concrete samples are produced from reactive natural aggregates in the laboratory and crushed at different expansion levels into coarse RCA. At the same time, coarse RCA were reclaimed from distinct members of an ASR affected bridge. Both types of RCA are submitted to accelerated carbonation. Their alkali reactivity is assessed through an autoclave mortar bar test and comparison of expansions with not carbonated RCA and original natural aggregates is performed. Results show that expansions of lab RCA are lower than the ones of original natural reactive aggregates, but higher than the 0.15% limit. In this case, expansions are significantly reduced by carbonation (20 to 50% reduction). On the contrary, expansions of RCA coming from in situ degraded concrete are below the acceptable limit and carbonation doesn't show any effect on the swelling potential.
Disciplines :
Materials science & engineering
Author, co-author :
Grigoletto, Sophie  ;  Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Hubert, Julien  ;  Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Duchesne, J.;  Department of Geology and Geological Engineering, Université Laval, Quebec City, Canada
Bissonnette, B.;  Department of Civil Engineering and Water Engineering, Université Laval, Quebec City, Canada
Michel, Frédéric ;  Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Courard, Luc  ;  Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Language :
English
Title :
Mitigation of Alkali-Silica Reaction Through Carbonation of Recycled Concrete Aggregates
Publication date :
2024
Main work title :
RILEM Bookseries
Publisher :
Springer Science and Business Media B.V.
ISBN/EAN :
978-3-03-159349-9
978-3-03-159348-2
Peer reviewed :
Peer reviewed
Available on ORBi :
since 17 July 2024

Statistics


Number of views
22 (6 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi