Humans; Male; Female; Computational Biology; Adult; Middle Aged; Consciousness/physiology; Brain Mapping/methods; Aged; Magnetic Resonance Imaging/methods; Brain/physiopathology; Brain/diagnostic imaging; Consciousness Disorders/physiopathology; Consciousness Disorders/diagnostic imaging; Computer Simulation; Models, Neurological; Brain state; fMRI data; Forcings; Healthy controls; In-silico; Metastables; Model based approach; Model free; Probabilistics; Resting state; Brain; Brain Mapping; Consciousness; Consciousness Disorders; Magnetic Resonance Imaging; Ecology, Evolution, Behavior and Systematics; Modeling and Simulation; Ecology; Molecular Biology; Genetics; Cellular and Molecular Neuroscience; Computational Theory and Mathematics
Abstract :
[en] A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Disciplines :
Neurosciences & behavior
Author, co-author :
Dagnino, Paulina Clara ; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
Escrichs, Anira; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
López-González, Ane; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Sanz Perl, Yonatan; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain ; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
Kringelbach, Morten L; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom ; Department of Psychiatry, University of Oxford, Oxford, United Kingdom ; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Laureys, Steven ; Université de Liège - ULiège > Département des sciences cliniques ; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Québec, Québec, Canada
Deco, Gustavo; Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain ; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
Language :
English
Title :
Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation.
P.D. was supported by the AGAUR FI-SDUR Grant (no. 2022 FISDU 00229) and by the AGAUR research support grant (ref. 2021 SGR 00917) funded by the Department of Research and Universities of the Generalitat of Catalunya. A.E. was supported by the project eBRAIN-Health - Actionable Multilevel Health Data (id 101058516), funded by the EU Horizon Europe. A.E. and G.D. were supported by the Grant PID2022-136216NBI00 funded by MICIU/AEI/10.13039/501100011033 and by \"ERDF A way of making Europe\", ERDF, EU. G.D. and Y.S.P. were supported by the project NEurological MEchanismS of Injury, and Sleep-like cellular dynamics (NEMESIS) (ref. 101071900) funded by the EU ERC Synergy Horizon Europe. Y. S.P. was also supported by the European Union\u2019s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 896354. S.L. and J.A. were supported by the HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship. The study was supported by the University and University Hospital of Li\u00E8ge, the Belgian National Funds for Scientific Research (F.R. S-FNRS), the MIS FNRS project (F.4521.23), the BIAL Foundation, AstraZeneca Foundation, the Generet funds and the King Baudouin Foundation, the James McDonnell Foundation, and Mind Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Sporns O. The human connectome: a complex network. New York Academy of Sciences. 2011; 1224:109–125. https://doi.org/10.1111/j.1749-6632.2010.05888.x PMID: 21251014
Escrichs A, Sanz Perl Y, Martínez-Molina N, Biarnes C, Garre-Olmo J, Fernández-Real JM, et al. The effect of external stimulation on functional networks in the aging healthy human brain. Cereb Cortex. 2022; 33(1):235–245. https://doi.org/10.1093/cercor/bhac064 PMID: 35311898
Vohryzek J, Cabral J, Castaldo F, Sanz-Perl Y, Lord LD, Fernandes H, et al. Dynamic Sensitivity Analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling. Computational and Structural Biotechnology Journal. 2022; 21:335–345. https://doi.org/10.1016/j.csbj.2022.11.060 PMID: 36582443
Mana L, Vila-Vidal M, Kockeritz C, Aquino K, Fornito A, Kringelbach ML, et al. Using in silico perturbational approach to identify critical areas in schizophrenia. Cerebral Cortex. 2023; 33(12):7642–7658. https://doi.org/10.1093/cercor/bhad067 PMID: 36929009
Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis N, et al. Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences. 2019; 116(36):18088–18097. https://doi.org/10.1073/pnas.1905534116 PMID: 31427539
Deco G, Tononi G, Boly M, Kringelbach M. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience. 2015; 16(7):430–9. https://doi.org/10.1038/ nrn3963 PMID: 26081790
Du Y, Fu Z, Calhoun VD. Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging. Frontiers in Neuroscience. 2018; 12. https://doi.org/10.3389/fnins.2018.00525 PMID: 30127711
Yakhkind A, Niznick N, Bodien Y, Hammond FM, Katz D, Luaute J, et al. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Behavioral Phenotyping. Neurocritical care. 2023; p. 1–9. https://doi.org/10.1007/s12028-023-01844-9 PMID: 37726548
Barra ME, Zink EK, Bleck TP, Cáceres E, Farrokh S, Foreman B, et al. Common data elements for disorders of consciousness: recommendations from the Working Group on Hospital Course, Confounders, and Medications. Neurocritical care. 2023; p. 1–7.
Edlow BL, Boerwinkle VL, Annen J, Boly M, Gosseries O, Laureys S, et al. Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging. Neurocritical care. 2023; p. 1–7.
Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. European journal of neurology. 2020; 27(5):741–756. https://doi.org/10.1111/ene.14151 PMID: 32090418
Panda R, López-González A, Gilson M, Gosseries O, Thibaut A, Frasso G, et al. Whole-brain analyses indicate the impairment of posterior integration and thalamo-frontotemporal broadcasting in disorders of consciousness. Human Brain Mapping. 2023; 44(11):4352–4371. https://doi.org/10.1002/hbm. 26386 PMID: 37254960
Demertzi A, Tagliazucchi E, Dehaene S, Deco G, Barttfeld P, Raimondo F, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science Advances. 2019; 5(2):aat7603. https://doi.org/10.1126/sciadv.aat7603 PMID: 30775433
Rizkallah J, Annen J, Modolo J, Gosseries O, Benquet P, Mortaheb S, et al. Decreased integration of EEG source-space networks in disorders of consciousness. NeuroImage: Clinical. 2019; 23:101841. https://doi.org/10.1016/j.nicl.2019.101841 PMID: 31063944
López-González A, Panda R, Ponce-Alvarez A, Zamora-López G, Escrichs A, Martial C, et al. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Communications Biology. 2021; 4(1):1–15. https://doi.org/10.1038/s42003-021-02537-9 PMID: 34489535
Escrichs A, Sanz Y, Uribe C, Camara E, Türker B, Pyatigorskaya N, et al. Unifying turbulent dynamics framework distinguishes different brain states. Communications Biology. 2021; 5(1):638. https://doi.org/10.1038/s42003-022-03576-6
Luppi A, Craig M, Pappas I, Finoia P, Williams G, Allanson J, et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nature Communications. 2019; 10(1):4616. https://doi.org/10.1038/s41467-019-12658-9 PMID: 31601811
Piarulli A, Bergamasco M, Thibaut A, Cologan V, Gosseries O, Laureys S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. Journal of neurology. 2016; 263:1746–1760. https://doi.org/10.1007/s00415-016-8196-y PMID: 27294259
Tagliazzucchi E, von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proceedings of the National Academy of Sciences. 2013; 110(38):15419–15424. https://doi.org/10.1073/pnas. 1312848110
Gu S, Cieslak M, Baird B, Muldoon SF, Grafton ST, Pasqualetti F, et al. The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure. Scientific Reports. 2018; 8(1):2507. https://doi.org/10.1038/s41598-018-20123-8 PMID: 29410486
Deco G, Jirsa V. Ongoing Cortical Activity at Rest: Criticality, Multistability and Ghost Attractors. The Journal of Neuroscience. 2012; 32(10):3366–75. https://doi.org/10.1523/JNEUROSCI.2523-11.2012 PMID: 22399758
Sanz Perl Y, Escrichs A, Tagliazucchi E, Kringelbach ML, Deco M. Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics. PLOS Computational Biology. 2022; 18(11):e1010662. https://doi.org/10.1371/journal.pcbi.1010662 PMID: 36322525
Deco G, Kringelbach M. Turbulent-like Dynamics in the Human Brain. Cell Reports. 2020; 33 (10):108471. https://doi.org/10.1016/j.celrep.2020.108471 PMID: 33296654
Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage. 2017; 160:41–54. https://doi.org/10.1016/j.neuroimage.2016.12.061 PMID: 28034766
Hansen E, Battaglia D, Spiegler A, Deco G, Jirsa V. Functional connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage. 2014; 105:525–35. https://doi.org/10.1016/j.neuroimage.2014.11.001 PMID: 25462790
Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex. 2014; 24(3):663–7. https://doi.org/10.1093/cercor/ bhs352 PMID: 23146964
Hutchison M, Womeldsorf T, Allen E, Bandettini P, Calhoun V, Corbetta M, et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage. 2013; 80:360–78. https://doi.org/10.1016/j.neuroimage.2013.05.079 PMID: 23707587
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends in Neurosciences. 2023;. https://doi.org/10.1016/j.tins.2023.04.001 PMID: 37164869
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nature Reviews Neurology. 2020; 17(3):135–156. https://doi.org/10.1038/s41582-020-00428-x PMID: 33318675
Deco G, Cabral J, Saenger V, Boly M, Tagliazucchi E, Laufs H, et al. Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. NeuroImage. 2017; 169:46–56. https://doi.org/10.1016/j.neuroimage.2017.12.009 PMID: 29225066
Keilholz S, Caballero-Gaudes C, Bandettini P, Deco G. Time-Resolved Resting-State Functional Magnetic Resonance Imaging Analysis: Current Status, Challenges, and New Directions. Brain Connectivity. 2017; 7(8):465–481. https://doi.org/10.1089/brain.2017.0543 PMID: 28874061
Knotkova H, Nitsche M, Bikson M, Woods A. Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications. Springer; 2019. https://doi.org/10.1007/978-3-319-95948-1
Ruffini G, Wendling F, Sanchez-Todo R, Santarnecchi E. Targeting brain networks with multichannel transcranial current stimulation (tCS). Current Opinion in Biomedical Engineering. 2018; 8:70–77. https://doi.org/10.1016/j.cobme.2018.11.001
Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H, Mochizuki Hitoshi and Bohnin DE, et al. Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimulation. 2009; 2(2):58–80. https://doi.org/10.1016/j.brs.2008.11.002 PMID: 20633405
Litvak V, Komssi S, Scherg M, Hoechstetter K, Classen J, Zaaroor M, et al. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex. Neuroimage. 2007; 37(1):56–70. https://doi.org/10.1016/j.neuroimage.2007.05.015 PMID: 17574872
Pascual-Leone A. Transcranial magnetic stimulation: studying the brain–behaviour relationship by induction of ‘virtual lesions’. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 1999; 354(1387):1229–1238. https://doi.org/10.1098/rstb.1999.0476 PMID: 10466148
Mohseni HR, Smith PP, Parsons CE, Young K, Hyam JA, Stein A, et al. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain. PLOS One. 2012; 7(6): e37993. https://doi.org/10.1371/journal.pone.0037993 PMID: 22675503
Kringelbach M, Jenkinson N, Owen S, Aziz T. Translational principles of deep brain stimulation. Nature Reviews Neuroscience. 2007; 8(8):623–635. https://doi.org/10.1038/nrn2196 PMID: 17637800
Deco G, Kringelbach M. Hierarchy of Information Processing in the Brain: A Novel’Intrinsic Ignition’ Framework. Neuron. 2017; 94(5):961–968. https://doi.org/10.1016/j.neuron.2017.03.028 PMID: 28595052
Clausen J. Ethical brain stimulation—neuroethics of deep brain stimulation in research and clinical practice. European Journal of Neuroscience. 2010; 32(7):1152–62. https://doi.org/10.1111/j.14609568.2010.07421.x PMID: 21039955
Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Annals of Neurology. 2016; 80(5):718–729. https://doi.org/10.1002/ana.24779 PMID: 27717082
Casali A, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali K, et al. A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior. Science Translational Medicine. 2013; 5(198):198ra105. https://doi.org/10.1126/scitranslmed.3006294 PMID: 23946194
Massimini M, Boly M, Casali A, Rosanova M, Tononi G. A perturbational approach for evaluating the brain’s capacity for consciousness. Progress in Brain Research. 2009; 177:201–14. https://doi.org/10.1016/S0079-6123(09)17714-2 PMID: 19818903
Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences. 2010; 107(6):2681–2686. https://doi.org/10.1073/pnas.0913008107 PMID: 20133802
Kringelbach ML, Deco G. Brain States and Transitions: Insights from Computational Neuroscience. Cell Reports. 2020; 32(10):108128. https://doi.org/10.1016/j.celrep.2020.108128 PMID: 32905760
Breakspear M. Dynamic models of large-scale brain activity. Nature Neuroscience. 2017; 20(3):340–352. https://doi.org/10.1038/nn.4497 PMID: 28230845
Cabral J, Vidaurre D, Marques P, Magalhães R, Silva Moreira P, Soares JM, et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Scientific Reports. 2017; 7(1):5135. https://doi.org/10.1038/s41598-017-05425-7 PMID: 28698644
Freyer F, Roberts J, Ritter P, Breakspear M. A Canonical Model of Multistability and Scale-Invariance in Biological Systems. Computational Biology. 2012; 8(8):e1002634. https://doi.org/10.1371/journal.pcbi.1002634 PMID: 22912567
Kelso S. Multistability and metastability: understanding dynamic coordination in the brain. Philosophical Transactions of The Royal Society B. 2012; 367(1591):906–18. https://doi.org/10.1098/rstb.2011. 0351 PMID: 22371613
Freyer F, Roberts J, Becker R, Robinson P, Breakspear M. Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms. The Journal of Neuroscience. 2011; 31(17):6353–6361. https://doi.org/10.1523/JNEUROSCI.6693-10.2011 PMID: 21525275
Deco G, Kringelbach M, Jirsa V, Ritter P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports. 2017; 7(1):3095. https://doi.org/10.1038/s41598-017-03073-5 PMID: 28596608
Deco G, Kringelbach M. Metastability and Coherence: Extending the Communication through Coherence hypothesis Using A Whole-Brain Computational Perspective. Trends in Neurosciences. 2016; 39 (3):125–135. https://doi.org/10.1016/j.tins.2016.01.001 PMID: 26833259
Tognoli E, Kelso SJA. The Metastable Brain. Neuron. 2014; 81(1):35–48. https://doi.org/10.1016/j.neuron.2013.12.022 PMID: 24411730
Sanz Perl Y, Pallavicini C, Piccinini J, Demertzi A, Vonhomme V, Martial C, et al. Low-dimensional organization of global brain states of reduced consciousness. Cell Press. 2023; 42(5):112491.
Escrichs A, Biarnes C, Garre-Olmo J, Fernández-Real JM, Ramos R, Pamplona R, et al. Whole-brain dynamics in aging: disruptions in functional connectivity and the role of the rich club. Cerebral Cortex. 2021; 31(5):2466–2481. https://doi.org/10.1093/cercor/bhaa367 PMID: 33350451
Figueroa CA, Cabral J, Mocking RJTT, Rapuano KM, van Hartevelt TJ, Deco G, et al. Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. Human Brain Mapping. 2019; 40(9):2771–2786. https://doi.org/10.1002/hbm.24559 PMID: 30864248
Kringelbach ML, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris R, Whybrow PC, et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proceedings of the National Academy of Sciences of the United States of America. 2020; 117(17):9566–9576. https://doi.org/10.1073/pnas. 1921475117 PMID: 32284420
Lord LDD, Expert P, Atasoy S, Roseman L, Rapuano K, Lambiotte R, et al. Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. Neuroimage. 2019; 199:127–142. https://doi.org/10.1016/j.neuroimage.2019.05.060 PMID: 31132450
Vohryzek J, Cabral J, Lord LD, Fernandes HM, Roseman L, Nutt DJ, et al. Brain dynamics predictive of response to psilocybin for treatment-resistant depression. bioRxiv. 2022;2022.06.30.497950. https://doi.org/10.1101/2022.06.30.497950
Beckmann C, Smith S. Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging. 2004; 23(2):137–52. https://doi.org/10.1109/TMI.2003.822821 PMID: 14964560
Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage. 2002; 17(2):825–841. https://doi.org/10.1006/nimg.2002.1132 PMID: 12377157
Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17:143–155. https://doi.org/10.1002/hbm.10062 PMID: 12391568
Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, Alfaro-Almagro F, Glasser MF, et al. Hand classification of fMRI ICA noise components. Neuroimage. 2017; 154:188–205. https://doi.org/10.1016/j.neuroimage.2016.12.036 PMID: 27989777
Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. Neuroimage. 2014; 80:449–468. https://doi.org/10.1016/j.neuroimage.2013.11.046 PMID: 24389422
Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage. 2014; 95:232–247. https://doi.org/10.1016/j.neuroimage.2014.03.034 PMID: 24657355
Shen X, Tokoglu F, Papademetris X, Constable RTT. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage. 2013; 82:403–15. https://doi.org/10.1016/j.neuroimage.2013.05.081 PMID: 23747961
Muthuraman M, Fleischer V, Kolber P, Luessi F, Zipp F, Groppa S. Structural Brain Network Characteristics Can Differentiate CIS from Early RRMS. Frontiers in Neuroscience. 2016; 10:14. https://doi.org/10.3389/fnins.2016.00014 PMID: 26869873
Cao Q, Shu N, An L, Wang P, Sun L, Xia MR, et al. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci. 2013; 33(26):10676–87. https://doi.org/10.1523/JNEUROSCI.4793-12.2013 PMID: 23804091
Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and gender-related differences in the cortical anatomical network. The Journal of Neuroscience. 2009; 29(50):15684–93. https://doi.org/10.1523/JNEUROSCI.2308-09.2009 PMID: 20016083
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 2001; 5(2):143–56. https://doi.org/10.1016/S1361-8415(01)00036-6 PMID: 11516708
Andersson JLR, Jenkinson M, Smith S. Non-linear registration aka Spatial normalisation FMRIB Technical Report TR07JA2; 2007.
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage. 2016; 125:1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019 PMID: 26481672
Leemans A, Jones DK. The B -matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine. 2009; 61(6):1336–1349. https://doi.org/10.1002/mrm.21890 PMID: 19319973
Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage. 2007; 34:144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018 PMID: 17070705
Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2003; 50 (5):1077–1088. https://doi.org/10.1002/mrm.10609 PMID: 14587019
Lohmann G, margulies D, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al. Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain. PLOS ONE. 2010; 5 (4):e10232. https://doi.org/10.1371/journal.pone.0010232 PMID: 20436911
Deco G, Cabral J, Woolrich M, Stevner A, Hartevelt T, Kringelbach M. Single or Multi-Frequency Generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. Neuroimage. 2017; 152:538–55. https://doi.org/10.1016/j.neuroimage.2017.03.023 PMID: 28315461
Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine. 1990; 9(7):811–8. https://doi.org/10.1002/sim.4780090710 PMID: 2218183
Cabral J, Hugues E, Sporns O, Deco G. Role of local network oscillations in resting-state functional connectivity. Neuroimage. 2011; 57(1):130–139. https://doi.org/10.1016/j.neuroimage.2011.04.010 PMID: 21511044
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15(1):273–89. https://doi.org/10.1006/nimg.2001.0978 PMID: 11771995
Cabral J, Kringelbach M, Deco G. Functional Connectivity dynamically evolves on multiple time-scales over a static Structural Connectome: Models and Mechanisms. NeuroImage. 2017; 160:84–96. https://doi.org/10.1016/j.neuroimage.2017.03.045 PMID: 28343985
Zhang J, Northoff G. Beyond noise to function: reframing the global brain activity and its dynamic topography. Communications Biology. 2022; 5(1):1350. https://doi.org/10.1038/s42003-022-04297-6 PMID: 36481785
Farinha M, Amado C, Morgado P, Cabral J. Increased Excursions to Functional Networks in Schizophrenia in the Absence of Task. Frontiers in Neuroscience. 2022; 16:821179. https://doi.org/10.3389/fnins.2022.821179 PMID: 35360175
Olsen A, Lykkebo-Valløe A, Ozenne B, Madsen MK, Stenbæk DS, Armand S, et al. Psilocybin modulation of time-varying functional connectivity is associated with plasma psilocin and subjective effects. Neuroimage. 2022; 264:119716. https://doi.org/10.1016/j.neuroimage.2022.119716 PMID: 36341951
Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiological Genomics. 2019; 51:432–442. https://doi.org/10.1152/physiolgenomics.00006.2019 PMID: 31373533
Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience. 2006; 7:268–277. https://doi.org/10.1038/nrn1884 PMID: 16552413
Marek S. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience. 2018; 20:133–140. https://doi.org/10.31887/DCNS.2018.20.2/smarek PMID: 30250390
Liu Y, Li Z, Bai Y. Frontal and parietal lobes play crucial roles in understanding the disorder of consciousness: A perspective from electroencephalogram studies. Frontiers in Neuroscience. 2023; 16:1024278. https://doi.org/10.3389/fnins.2022.1024278 PMID: 36778900
Crone JS, Soddu A, Höller Y, Vanhaudenhuyse A, Schurz M, Bergmann J, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clinical. 2014; 4:240–248. https://doi.org/10.1016/j.nicl.2013.12.005 PMID: 24455474
Qin P, Wu X, Huang Z, Duncan NW, Tang W, Wolff A, et al. How are different neural networks related to consciousness? Annals of Neurology. 2015; 78(4):594–605. https://doi.org/10.1002/ana.24479 PMID: 26290126
Fernández-Espejo D, Soddu A, Cruse D, Palacios EM, Junque C, Vanhaudenhuyse A, et al. A role for the default mode network in the bases of disorders of consciousness. Annals of Neurology. 2012; 72 (3):335–43. https://doi.org/10.1002/ana.23635 PMID: 23034909
Vanhaudenhuyse A, Demertzi A, Schabus M, Noirhomme Q. Two Distinct Neuronal Networks Mediate the Awareness of Environment and of Self. Journal of Cognitive Neuroscience. 2011; 23(3):570–8. https://doi.org/10.1162/jocn.2010.21488 PMID: 20515407
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2009; 1:161–71. https://doi.org/10.1093/brain/awp313 PMID: 20034928
Demertzi A, Soddu A, Laureys S. Consciousness supporting networks. Current Opinion in Neurobiology. 2013; 23(2):239–44. https://doi.org/10.1016/j.conb.2012.12.003 PMID: 23273731
Crone JS, Ladurner G, Höller Y, Golaszewski S, Trinka E, Kronbichler M. Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PloS one. 2011; 6(10):e26373. https://doi.org/10.1371/journal.pone.0026373 PMID: 22039473
Craighero L. The Role of the Sensorimotor System in Cognitive Functions. Brain Sciences. 2022; 12 (5). https://doi.org/10.3390/brainsci12050604 PMID: 35624991
Martínez DE, Rudas J, Demertzi A, Charland-Verville V, Soddu A, Laureys S, et al. Reconfiguration of large-scale functional connectivity in patients with disorders of consciousness. Brain and behavior. 2020; 10(1):e1476. https://doi.org/10.1002/brb3.1476 PMID: 31773918
Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, et al. Persistent default-mode network connectivity during light sedation. Human brain mapping. 2008; 29(7):839–847. https://doi.org/10.1002/hbm.20537 PMID: 18219620
Qin P, Wu X, Wu C, Wu H, Zhang J, Huang Z, et al. Higher-order sensorimotor circuit of the brain’s global network supports human consciousness. Neuroimage. 2021; 231:117850. https://doi.org/10.1016/j.neuroimage.2021.117850 PMID: 33582277
Cao B, Chen Y, Yu R, Chen L, Chen P, Weng Y, et al. Abnormal dynamic properties of functional connectivity in disorders of consciousness. NeuroImage: Clinical. 2019; 24:102071. https://doi.org/10.1016/j.nicl.2019.102071 PMID: 31795053
Medina JP, Nigri A, Stanziano M, D’Incerti L, Sattin D, Ferraro S, et al. Resting-State fMRI in Chronic Patients with Disorders of Consciousness: The Role of Lower-Order Networks for Clinical Assessment. Brain Sciences. 2022; 12(3):355. https://doi.org/10.3390/brainsci12030355 PMID: 35326311
Soler-Toscano F, Galadí J, Escrichs A, Sanz Perl Y, López-González A, Sitt JD, et al. What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics. PLOS Computational Biology. 2022; 18(9):e1010412. https://doi.org/10.1371/journal.pcbi.1010412 PMID: 36067227
Cabral J, Kringelbach M, Deco G. Exploring the network dynamics underlying brain activity during rest. Progress in Neurobiology. 2014; 114:102–31. https://doi.org/10.1016/j.pneurobio.2013.12.005 PMID: 24389385
Deco G, Kringelbach M. Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders. Neuron. 2014; 84(5):892–905. https://doi.org/10.1016/j.neuron.2014.08.034 PMID: 25475184
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Frontiers in Systems Neuroscience. 2023; 17:1085902. https://doi.org/10.3389/fnsys.2023.1085902 PMID: 37304151
Kazemi S, Jamali Y. Phase synchronization and measure of criticality in a network of neural mass models. Scientific reports. 2022; 12(1):1319. https://doi.org/10.1038/s41598-022-05285-w PMID: 35079038
Wu Y, Li Z, Qu R, Wang Y, Li Z, Wang L, et al. Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness. Neural Plasticity. 2023; 2023. https://doi.org/10.1155/2023/4142053 PMID: 37113750
Alnagger N, Cardone P, Martial C, Laureys S, Annen J, Gosseries O. The current and future contribution of neuroimaging to the understanding of disorders of consciousness. Elsevier. 2023; 52(2):104163.
Cabral J, Castaldo F, Vohryzek J, Litvak V, Bick C, Lambiotte R, et al. Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome. Communications Physics. 2022; 5 (184). https://doi.org/10.1038/s42005-022-00950-y PMID: 38288392
Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cognitive Science. 2005; 9(10):474–80. https://doi.org/10.1016/j.tics.2005.08.011 PMID: 16150631
Spasojević G, Malobabic S, Pilipović-Spasojević O, Djukić-Macut N, Maliković A. Morphology and digitally aided morphometry of the human paracentral lobule. Folia Morphologica. 2013; 72(1):10–16. https://doi.org/10.5603/FM.2013.0002 PMID: 23749705
Silva AB, Liu JR, Zhao L, Levy DF, Scott TL, Chang EF. A neurosurgical functional dissection of the middle precentral gyrus during speech production. Journal of Neuroscience. 2022; 42(45):8416–8426. https://doi.org/10.1523/JNEUROSCI.1614-22.2022 PMID: 36351829
Itabashi R, Nishio Y, Kataoka Y, Yazawa Y, Furui E, Matsuda M, et al. Damage to the left precentral gyrus is associated with apraxia of speech in acute stroke. Stroke. 2016; 47(1):31–36. https://doi.org/10.1161/STROKEAHA.115.010402 PMID: 26645260
Piccione F, Cavinato M, Manganotti P, Formaggio E, Storti SF, Battistin L, et al. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabilitation and Neural Repair. 2011; 25(1):98–102. https://doi.org/10.1177/ 1545968310369802 PMID: 20647501
Cincotta M, Giovannelli F, Chiaramonti R, Bianco G, Godone M, Battista D, et al. No effects of 20 HzrTMS of the primary motor cortex in vegetative state: a randomised, sham-controlled study. Cortex. 2015; 71:368–376. https://doi.org/10.1016/j.cortex.2015.07.027 PMID: 26301875
Kotchoubey B, Merz S, Lang S, Markl A, Müller, Yu T, et al. Global functional connectivity reveals highly significant differences between the vegetative and the minimally conscious state. Journal of Neurology. 2013; p. 975–983. https://doi.org/10.1007/s00415-012-6734-9 PMID: 23128970
Pozeg P, Alemán-Goméz Y, Jöhr J, Muresanu D, Pincherle A, Ryvlin P, et al. Structural connectivity in recovery after coma: Connectome atlas approach. NeuroImage: Clinical. 2023; 37:103358. https://doi.org/10.1016/j.nicl.2023.103358 PMID: 36868043
Wu H, Qi Z, Wu X, Zhang J, Wu C, Huang Z, et al. Anterior precuneus related to the recovery of consciousness. NeuroImage: Clinical. 2022; 33:102951. https://doi.org/10.1016/j.nicl.2022.102951 PMID: 35134706
Zhang L, Luo L, Zhou Z, Xu K, Zhang L, Liu X, et al. Functional connectivity of anterior insula predicts recovery of patients with disorders of consciousness. Frontiers in neurology. 2018; 9:1024. https://doi.org/10.3389/fneur.2018.01024 PMID: 30555407
Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM. Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul. 2016; 9 (6):940–941. https://doi.org/10.1016/j.brs.2016.07.008 PMID: 27567470
Schiff ND, Giacino JT, Karlmar K, victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007; 448:600–603. https://doi.org/10.1038/nature06041 PMID: 17671503
Schiff ND, Giacino JT, Butson CR, Choi EY, Baker JL, O’Sullivan KP, et al. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nature Medicine. 2023; p. 1–13. PMID: 38049620
Schiff NDl. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends in Neurosciences. 2010; 33(1):1–9. https://doi.org/10.1016/j.tins.2009.11.002 PMID: 19954851
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nature Reviews Neurology. 2014; 10(2):99–114. https://doi.org/10.1038/nrneurol.2013.279 PMID: 24468878
Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proceedings of the National Academy of Sciences. 2014; 111(17):6473–6478. https://doi.org/10.1073/pnas. 1320969111 PMID: 24733913
Monti MM, Rosenberg M, Finoia P, Kamau E, Pickard JD, Owen AM. Thalamo-frontal connectivity mediates top-down cognitive functions in disorders of consciousness. Neurology. 2015; 84(2):167–173. https://doi.org/10.1212/WNL.0000000000001123 PMID: 25480912
Lutkenhoff ES, Chiang J, Tshibanda L, Kamau E, Kirsch M, Pickard JD, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Annals of Neurology. 2015; 78(1):68–76. https://doi.org/10.1002/ana.24423 PMID: 25893530
Yang Y, Dai Y, He Q, Wang S, Chen X, Geng X, et al. Altered brain functional connectivity in vegetative state and minimally conscious state. Frontiers in Aging Neuroscience. 2023; 15. https://doi.org/10.3389/fnagi.2023.1213904 PMID: 37469954
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Scientific Reports. 2023; 13(1):11938. https://doi.org/10.1038/s41598-023-38967-0 PMID: 37488187
Keun JTB, van Heese EM, Laansma MA, Weeland CJ, de Joode NT, van den Heuvel OA, et al. Structural assessment of thalamus morphology in brain disorders: A review and recommendation of thalamic nucleus segmentation and shape analysis. Neuroscience & Biobehavioral Reviews. 2021; 131:466–478. https://doi.org/10.1016/j.neubiorev.2021.09.044
Hwang K, Bertolero MA, Liu WB, D’Esposito M. The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience. 2017; 37(23):5594–5607. https://doi.org/10.1523/JNEUROSCI.0067-17.2017 PMID: 28450543
Tasserie J, Uhrig L, Sitt JD, Manasova D, Dupont M, Dehaene S, et al. Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model. Science Advances. 2022; 8(11):eabl5547. https://doi.org/10.1126/sciadv.abl5547 PMID: 35302854
Bastos AM, Donoghue JA, Brincat SL, Mahnke M, Yanar J, Correa J, et al. Neural effects of propofolinduced unconsciousness and its reversal using thalamic stimulation. Elife. 2021; 10:e60824. https://doi.org/10.7554/eLife.60824 PMID: 33904411
Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Andryk S, Dooley GL, et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron. 2020; 106(1):66–75. https://doi.org/10.1016/j.neuron.2020.01.005 PMID: 32053769
Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010; 51(5):899–908. https://doi.org/10.1111/j.1528-1167.2010.02536.x PMID: 20331461
Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia. 2002; 43(6):603–608. https://doi.org/10.1046/j.1528-1157.2002.26001.x PMID: 12060019
Baker JL, Ryou JW, Wei XF, Butson CR, Schiff ND, Purpura KP. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates. Journal of neurophysiology. 2016;. https://doi.org/10.1152/jn.01129.2015 PMID: 27582298
Zheng ZS, Reggente N, Lutkenhoff E, Owen AM, Monti MM. Disentangling disorders of consciousness: Insights from diffusion tensor imaging and machine learning. Human brain mapping. 2017; 38 (1):431–443. https://doi.org/10.1002/hbm.23370 PMID: 27622575
Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Raz A, et al. Consciousness depends on integration between parietal cortex, striatum, and thalamus. Cell systems. 2021; 12(4):363–373. https://doi.org/10.1016/j.cels.2021.02.003 PMID: 33730543
Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, Kheilholz S, et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Network neuroscience. 2020; 4(1):30–69. https://doi.org/10.1162/netn_a_00116 PMID: 32043043
Deco G, Lynn C, Perl YS, Kringelbach ML. Violations of the fluctuation-dissipation theorem reveal distinct non-equilibrium dynamics of brain states. Physical Review E. 2023; 108(6): 064410. https://doi.org/10.1103/PhysRevE.108.064410 PMID: 38243472
Muldoon S, Pasqualetti F, Gu S, Cieslak M, Grafton S, Vettel J, et al. Stimulation-based control of dynamic brain networks. PLOS Computational Biology. 2016; 12(9):1071–1107. https://doi.org/10.1371/journal.pcbi.1005076 PMID: 27611328
Corazzol M, Lio G, Lefevre A, Deiana G, Tell L, André-Obadia N, et al. Restoring consciousness with vagus nerve stimulation. Current Biology. 2017; 27(18):R994–R996. https://doi.org/10.1016/j.cub.2017.07.060 PMID: 28950091
Opara K, Malecka I, Szczygiel M. Clinimetric measurement in traumatic brain injuries. Journal of Medicine and Life. 2014; 7(2):124–7. PMID: 25408714
Owen A. Improving diagnosis and prognosis in disorders of consciousness. Brain. 2020; 143(4):1050–1053. https://doi.org/10.1093/brain/awaa056 PMID: 32318732
Bodien Y, Carlowicz C, Chatelle C, Giacino J. Sensitivity and Specificity of the Coma Recovery Scale-Revised Total Score in Detection of Conscious Awareness. Archives of Physical Medicine and Rehabilitation. 2015; 97(3):490–492. https://doi.org/10.1016/j.apmr.2015.08.422 PMID: 26342571
Tagliazzucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron. 2014; 82(3):695–708. https://doi.org/10.1016/j.neuron.2014.03.020
Fingelkurts A, Fingelkurts A, Bagnato S, Boccagni C, Galardi G. Do we need a theory-based assessment of consciousness in the field of disorders of consciousness? Frontiers in Neurosscience. 2014; 8:402.
Constable RT. In: Faro SH, Mohamed FB, editors. Challenges in fMRI and Its Limitations. New York, NY: Springer New York; 2006. p. 75–98. Available from: https://doi.org/10.1007/0-387-34665-1_4.
Ipiña IP, Kehoe PD, Kringelbach M, Laufs H, Ibañez A, Deco G, et al. Modeling regional changes in dynamic stability during sleep and wakefulness. Neuroimage. 2020; 215:116833. https://doi.org/10.1016/j.neuroimage.2020.116833 PMID: 32289454
Rossini P, Burke D, Chen R, C L, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. Clinical Neurophysiology. 2015; 126(6):1071–1107. https://doi.org/10.1016/j.clinph.2015.02.001 PMID: 25797650