cambial marking; growth‐ring distinctness; periodicity of growth‐ring formation; secondary growth; tropical forests; Ecology, Evolution, Behavior and Systematics; Plant Science
Abstract :
[en] In the tropics, more precisely in equatorial dense rainforest, xylogenesis is driven by a little distinct climatological seasonality, and many tropical trees do not show clear growth rings. This makes retrospective analyses and modeling of future tree performance difficult. This research investigates the presence, the distinctness, and the periodicity of growth ring for dominant tree species in two semi-deciduous rainforests, which contrast in terms of precipitation dynamics. Eighteen tree species common to both forests were investigated. We used the cambial marking technique and then verified the presence and periodicity of growth-ring boundaries in the wood produced between pinning and collection by microscopic and macroscopic observation. The study showed that all eighteen species can form visible growth rings in both sites. However, the periodicity of ring formation varied significantly within and between species, and within sites. Trees from the site with clearly defined dry season had a higher likelihood to form periodical growth rings compared to those from the site where rainfall seasonality is less pronounced. The distinctness of the formed rings however did not show a site dependency. Periodical growth-ring formation was more likely in fast-growing trees. Furthermore, improvements can be made by a detailed study of the cambial activity through microcores taken at high temporal resolution, to get insight on the phenology of the lateral meristem.
Luse Belanganayi, Basile ; Université de Liège - ULiège > TERRA Research Centre ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Delvaux, Claire; Woodwise Brussels Belgium
Kearsley, Elizabeth ; BlueGreen Labs Melsele Belgium
Lievens, Kévin ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Rousseau, Mélissa; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Mbungu Phaka, Christophe; Institut National Pour l'Etudes et la Recherche Agronomiques Kinshasa Democratic Republic of the Congo
Djiofack, Brice Yannick ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium ; Department of Forest and Water Management Gent University Ghent Belgium
Laurent, Félix ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Bourland, Nils ; Université de Liège - ULiège > Forêts, Nature et Paysage > Laboratoire de Foresterie des régions tropicales et subtropicales ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Hubau, Wannes ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium ; Department of Forest and Water Management Gent University Ghent Belgium
De Mil, Tom ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Beeckman, Hans ; Service of Wood Biology Royal Museum for Central Africa (RMCA) Tervuren Belgium
Language :
English
Title :
Growth periodicity in semi-deciduous tropical tree species from the Congo Basin.
This study was carried out as part of the PilotMAB and PilotMABplus projects of the Service of Wood Biology of the Royal Museum for Central Africa (RMCA). These projects were funded by the Belgian Directorate-General for Development Cooperation and Humanitarian Aid (DGD). The Hirox HRX-01 3D Digital Microscope, used for some of the images in this paper, is part of the Laboratory of Wood Technology of Ghent university (UGent-Woodlab) and funded by the Flemish Research Council (Fonds Wetenschappelijk Onderzoek, FWO) through project G014123N (COBARCHIVES: A long-term view of Congo Basin forest resilience from fossil charcoal and living trees). We also thank the Regional Post-Graduate Training School on Integrated Management of Tropical Forests and Lands (ERAIFT), the Institut National pour l'Etude et la Recherche Agronomiques\u2014Luki (INERA-Luki) and the non-profit association NATURE PLUS.This study was carried out as part of the PilotMAB and PilotMABplus projects of the Service of Wood Biology of the Royal Museum for Central Africa (RMCA). These projects were funded by the Belgian Directorate\u2010General for Development Cooperation and Humanitarian Aid (DGD). The Hirox HRX\u201001 3D Digital Microscope, used for some of the images in this paper, is part of the Laboratory of Wood Technology of Ghent university (UGent\u2010Woodlab) and funded by the Flemish Research Council (Fonds Wetenschappelijk Onderzoek, FWO) through project G014123N (COBARCHIVES: A long\u2010term view of Congo Basin forest resilience from fossil charcoal and living trees). We also thank the Regional Post\u2010Graduate Training School on Integrated Management of Tropical Forests and Lands (ERAIFT), the Institut National pour l'Etude et la Recherche Agronomiques\u2014Luki (INERA\u2010Luki) and the non\u2010profit association NATURE PLUS.
Anchukaitis, K. J. (2017). Tree rings reveal climate change past, present, and future. Proceedings of the American Philosophical Society, 161(3), 244–263.
Babst, F., Bouriaud, O., Papale, D., Gielen, B., Janssens, I. A., Nikinmaa, E., Ibrom, A., Wu, J., Bernhofer, C., Köstner, B., Grünwald, T., Seufert, G., Ciais, P., & Frank, D. (2014). Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. The New Phytologist, 201(4), 1289–1303. https://doi.org/10.1111/nph.12589
Belanganayi, L. (2024). Luse Belanganayi et al - Tropical Tree Growth: Congo Basin; figshare. https://doi.org/10.6084/m9.figshare.25167212
Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. https://doi.org/10.2307/1937467
Borchert, R. (1999). Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA Journal, 20(3), 239–247. https://doi.org/10.1163/22941932-90000687
Brienen, R. J. W., Schöngart, J., & Zuidema, P. A. (2016). Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees. In G. Goldstein & L. S. Santiago (Eds.), Tropical tree physiology: Adaptations and responses in a changing environment (pp. 439–461). Springer International Publishing. https://doi.org/10.1007/978-3-319-27422-5_20
Brienen, R. J. W., & Zuidema, P. A. (2005). Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia, 146(1), 1–12. https://doi.org/10.1007/s00442-005-0160-y
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2), Article 2. https://doi.org/10.32614/RJ-2017-066
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference (2nd ed., p. 488). Springer. https://doi.org/10.1007/b97636
Bush, E. R., Abernethy, K. A., Jeffery, K., Tutin, C., White, L., Dimoto, E., Dikangadissi, J.-T., Jump, A. S., & Bunnefeld, N. (2017). Fourier analysis to detect phenological cycles using long-term tropical field data and simulations. Methods in Ecology and Evolution, 8(5), 530–540. https://doi.org/10.1111/2041-210X.12704
Chowdhury, Md. Q., Kitin, P., De Ridder, M., Delvaux, C., & Beeckman, H. (2016). Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: A proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees, 30(1), 227–239. https://doi.org/10.1007/s00468-015-1292-2
Chowdhury, M. Q., Schmitz, N., Verheydens, A., Sass-Klaassen, U., Koedam, N., & Beeckman, H. (2008). Nature and periodicity of growth rings in two Bangladeshi mangrove species. IAWA Journal, 29(3), 265–276. https://doi.org/10.1163/22941932-90000185
Coster, C. (1927). Zur anatomie und physiologie der zuwachszonen und jahresbildung in den tropen. Annals of Jardin Botanique de Buitenzorg, 37, 49–160.
Couralet, C., Van den Bulcke, J., Ngoma, L., Van Acker, J., & Beeckman, H. (2013). Phenology in functional groups of central African rainforest trees. Journal of Tropical Forest Science, 25(3), 361–374.
Denslow, J. S. (1987). Tropical rainforest gaps and tree species diversity. Annual Review of Ecology, Evolution, and Systematics, 18(1), 431–451. https://doi.org/10.1146/annurev.es.18.110187.002243
Détienne, P. (1989). Appearance and periodicity of growth rings in some tropical woods. IAWA Journal, 10(2), 123–132. https://doi.org/10.1163/22941932-90000480
Détienne, P., Oyono, F., Madron, L., Demarquez, B., & Nasi, R. (1998). L'analyse de cernes: Applications aux études de croissance de quelques essences en peuplements naturels de forét dense africaine (p. 40). CIRAD-Forêt.
Dünisch, O., Bauch, J., & Gasparotto, L. (2002). Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (meliaceae). IAWA Journal, 23(2), 101–119. https://doi.org/10.1163/22941932-90000292
Gourlay, I. D. (1995). Growth ring characteristics of some African acacia species. Journal of Tropical Ecology, 11(1), 121–140. https://doi.org/10.1017/S0266467400008488
Hufkens, K., & Kearsley, E. (2023). Bluegreen-labs/junglerhythms: The jungle rhythms workflow: Recovering historical tropical tree phenology data [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7650295
IAWA Committee. (1989). IAWA list of microscopic features for hardwood identification. IAWA Bull n. s., 10(3), 219–332.
Janssen, T., van der Velde, Y., Hofhansl, F., Luyssaert, S., Naudts, K., Driessen, B., Fleischer, K., & Dolman, H. (2021). Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: Reconciling remote sensing data and field observations. Biogeosciences, 18(14), 4445–4472. https://doi.org/10.5194/bg-18-4445-202
Kearsley, E., Verbeeck, H., Stoffelen, P., Janssens, S. B., Yakusu, E. K., Kosmala, M., De Mil, T., Bauters, M., Kitima, E. R., Ndiapo, J. M., Chuda, A. L., Richardson, A. D., Wingate, L., Ilondea, B. A., Beeckman, H., van den Bulcke, J., Boeckx, P., & Hufkens, K. (2024). Historical tree phenology data reveal the seasonal rhythms of The Congo Basin rainforest. Pei, 5(2), e10136. https://doi.org/10.1002/pei3.10136
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Lehnebach, R., Campioli, M., Gričar, J., Prislan, P., Mariën, B., Beeckman, H., & Van den Bulcke, J. (2021). High-resolution X-ray computed tomography: A new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Frontiers in Plant Science, 12, 698640. https://doi.org/10.3389/fpls.2021.698640
Lieberman, M., & Lieberman, D. (1985). Simulation of growth curves from periodic increment data. Ecology, 66(2), 632–635. https://doi.org/10.2307/1940415
López, L., Villalba, R., & Peña-Claros, M. (2012). Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia. Forestry Systems, 21(3), Article 3. https://doi.org/10.5424/fs/2012213-02966
Lubini, A. (1997). La végétation de la Réserve de biosphère de Luki au Mayombe (Zaïre) (Vol. 10). Jardin Botanique National de Belgique.
Mariaux, A. (2016). Nature and periodicity of growth rings in African timber: Can they be used to determine the age of trees? (I. Bossanyi, Trans.). Bois and Forets des Tropiques, 327, 51–76. https://doi.org/10.19182/bft2016.327.a31296
Marra, D. M., Chambers, J. Q., Higuchi, N., Trumbore, S. E., Ribeiro, G. H. P. M., dos Santos, J., Negrón-Juárez, R. I., Reu, B., & Wirth, C. (2014). Large-scale wind disturbances promote tree diversity in a Central Amazon Forest. PLoS One, 9(8), e103711. https://doi.org/10.1371/journal.pone.0103711
Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavelier, J., & Wright, S. J. (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121(3), 293–301. https://doi.org/10.1007/s004420050931
Ogden, J., & West, C. J. (1981). Annual rings in Beilschmiedia tawa (Lauraceae). New Zealand Journal of Botany, 19(4), 397–400. https://doi.org/10.1080/0028825X.1981.10426397
Pearson, S., Hua, Q., Allen, K., & Bowman, D. M. J. S. (2011). Validating putatively cross-dated Callitris tree-ring chronologies using bomb-pulse radiocarbon analysis. Australian Journal of Botany, 59(1), 7.
Philippon, N., Cornu, G., Monteil, L., Gond, V., Moron, V., Pergaud, J., Sèze, G., Bigot, S., Camberlin, P., Doumenge, C., Fayolle, A., & Ngomanda, A. (2019). The light-deficient climates of western central African evergreen forests. Environmental Research Letters, 14(3), 034007. https://doi.org/10.1088/1748-9326/aaf5d8
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Robert, E. M. R., Schmitz, N., Okello, J. A., Boeren, I., Beeckman, H., & Koedam, N. (2011). Mangrove growth rings: Fact or fiction? Trees, 25(1), 49–58. https://doi.org/10.1007/s00468-010-0487-9
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Schöngart, J., Piedade, M. T. F., Ludwigshausen, S., Horna, V., & Worbes, M. (2002). Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology, 18(4), 581–597. https://doi.org/10.1017/S0266467402002389
Sénéchal, J., Kabala, M., & Fournier, F. (1989). Revue des connaissances sur le Mayombe. UNESCO-PNUD. https://library.wur.nl/WebQuery/isric/2254166
Seo, J.-W., Eckstein, D., & Schmitt, U. (2007). The pinning method: From pinning to data preparation. Dendrochronologia, 25(2), 79–86. https://doi.org/10.1016/j.dendro.2007.04.001
Singh, K. P., & Kushwaha, C. P. (2016). Deciduousness in tropical trees and its potential as indicator of climate change: A review. Ecological Indicators, 69, 699–706. https://doi.org/10.1016/j.ecolind.2016.04.011
Tarelkin, Y., Delvaux, C., Ridder, M. D., Berkani, T. E., Cannière, C. D., & Beeckman, H. (2016). Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA Journal, 37(2), 275-S7. https://doi.org/10.1163/22941932-20160134
Tarelkin, Y., Hufkens, K., Hahn, S., Van den Bulcke, J., Bastin, J.-F., Angoboy Ilondea, B., Debeir, O., Van Acker, J., Beeckman, H., & De Cannière, C. (2019). Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests. Trees, 33(3), 893–909. https://doi.org/10.1007/s00468-019-01826-5
Vargas, D., Pucha-Cofrep, D., Serrano-Vincenti, S., Burneo, A., Carlosama, L., Herrera, M., Cerna, M., Molnár, M., Jull, A. J. T., Temovski, M., László, E., Futó, I., Horváth, A., & Palcsu, L. (2022). ITCZ precipitation and cloud cover excursions control Cedrela nebulosa tree-ring oxygen and carbon isotopes in the northwestern Amazon. Global and Planetary Change, 211, 103791. https://doi.org/10.1016/j.gloplacha.2022.103791
Verheyden, A., Gitundu Kairo, J., Beeckman, H., & Koedam, N. (2004). Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Annals of Botany, 94(1), 59–66. https://doi.org/10.1093/aob/mch115
Wheeler, E. A., & Baas, P. (1998). Wood identification–a review. IAWA Journal, 19(3), 241–264. https://doi.org/10.1163/22941932-90001528
Worbes, M. (1995). How to measure growth dynamics in tropical trees a review. IAWA Journal, 16(4), 337–351. https://doi.org/10.1163/22941932-90001424
Worbes, M. (1999). Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology, 87(3), 391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x
Worbes, M. (2002). One hundred years of tree-ring research in the tropics – A brief history and an outlook to future challenges. Dendrochronologia, 20(1), 217–231. https://doi.org/10.1078/1125-7865-00018
Worbes, M. (2011). Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In W. J. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management (pp. 329–346). Springer, Netherlands. https://doi.org/10.1007/978-90-481-8725-6_17
Zuidema, P. A., Brienen, R. J. W., & Schöngart, J. (2012). Tropical forest warming: Looking backwards for more insights. Trends in Ecology & Evolution, 27(4), 193–194. https://doi.org/10.1016/j.tree.2011.12.007