[en] In the context of planetary magnetospheres, the Alfvén radius plays a critical role as the demarcation line where the planet's magnetosphere and ionosphere effectively decouple. This boundary is pivotal in understanding the complex interactions between planetary magnetic fields and space plasma environments. This study presents a dynamic analysis of the Alfvén radius within Jupiter's magnetosphere using high‐resolution simulations to capture its temporal variability. Our simulations reveal that the Alfvén radius presents a dynamic behavior, which is strongly modulated by planetary rotation. However, when averaged over one Jovian rotation period, the location of the Alfvén radius displays striking similarities to that described by the statistical models proposed by Jenkins et al. (2024, <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://10.17635/lancaster/researchdata/661">10.17635/lancaster/researchdata/661</jats:ext-link>). Specifically, our averaged results highlight a prominent outward bulge in the radius location toward ∼03 local time with a notable absence of the radius between the noon and dusk sectors. The absence of the Alfvén radius suggests the higher Alfvén velocities in the noon‐to‐dusk sector associated with strong magnetic fields. These results suggest that while short‐term dynamics are present, the average position of the Alfvén radius over a rotation period roughly remains consistent with previous steady‐state models, providing an enhanced understanding of the long‐term behavior exhibited by the magnetospheric plasma environment in Jupiter's magnetosphere. Importantly, the dynamic location of the Alfvén radius and the observed asymmetry after averaging over one rotation period could demonstrate a significant correlation with the complex evolution of the auroral enhancement.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Xu, Yan ; Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China ; College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China ; Department of Physics Lancaster University Lancaster UK
Ray, Licia ; Department of Physics Lancaster University Lancaster UK
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China ; College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China ; Department of Physics and Astronomy University College London London UK ; NWU‐HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences The University of Hong Kong Hong Kong SAR China
Zhang, Binzheng ; NWU‐HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences The University of Hong Kong Hong Kong SAR China
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Badman, Sarah ; Department of Physics Lancaster University Lancaster UK
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Feng, Enhao ; NWU‐HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences The University of Hong Kong Hong Kong SAR China
Qin, Tianshu; NWU‐HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences The University of Hong Kong Hong Kong SAR China
Wei, Yong; Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China ; College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
Language :
English
Title :
Revealing the Local Time Structure of the Alfvén Radius in Jupiter's Magnetosphere Through High‐Resolution Simulations
Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405–406. https://doi.org/10.1038/150405d0
Bagenal, F., Wilson, R. J., Siler, S., Paterson, W. R., & Kurth, W. S. (2016). Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research, 121(5), 871–894. https://doi.org/10.1002/2016je005009
Birn, J., Raeder, J., Wang, Y. L., Wolf, R. A., & Hesse, M. (2004). On the propagation of bubbles in the geomagnetic tail. In Annales geophysicae, (Vol. 22(5), pp. 1773–1786). Göttingen, Germany: Copernicus Publications. https://doi.org/10.5194/angeo-22-1773-2004
Blanc, M., Kallenbach, R., & Erkaev, N. V. (2005). Solar system magnetospheres. Space Science Reviews, 116(1–2), 227–298. https://doi.org/10.1007/1-4020-4038-5_15
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J. C., Matar, J., et al. (2021). Are dawn storms Jupiter's Auroral substorms? AGU Advances, 2(1), e2020AV000275. https://doi.org/10.1029/2020av000275
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first Nine Orbits. Geophysical Research Letters, 45(6), 2590–2596. https://doi.org/10.1002/2018gl077312
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main Auroral oval in Jupiter's coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10–11), 1067–1088. https://doi.org/10.1016/s0032-0633(00)00167-7
Delamere, P. A., & Bagenal, F. (2010). Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 115(A10), 10170–10199. https://doi.org/10.1029/2010ja015347
Feng, E., Zhang, B., Yao, Z., Delamere, P. A., Zheng, Z., Dunn, W. R., & Ye, S.-Y. (2023). Variation of the Jovian magnetopause under constant solar wind conditions: Significance of magnetodisc dynamics. Geophysical Research Letters, 50(12), e2023GL104046. https://doi.org/10.1029/2023GL104046
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter's Auroral emissions. Geophysical Research Letters, 46(13), 7157–7165. https://doi.org/10.1029/2019gl082951
Greathouse, T., Gladstone, R., Versteeg, M., Hue, V., Kammer, J., Giles, R., et al. (2021). Local time dependence of Jupiter's polar auroral emissions observed by Juno UVS. Journal of Geophysical Research: Planets, 126(12), e2021JE006954. https://doi.org/10.1029/2021je006954
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et al. (2018). Jupiter's aurora observed with HST during Juno Orbits 3 to 7. Journal of Geophysical Research, 123(5), 3299–3319. https://doi.org/10.1002/2017ja025046
Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W. H., GéRard, J.-C., & Kim, J. (2003). Jupiter's polar Auroral emissions. Journal of Geophysical Research, 108(A10), e2021JE006954. https://doi.org/10.1029/2003ja010017
Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/ja084ia11p06554
Hill, T. W., Dessler, A. J., & Goertz, C. K. (1983). Magnetospheric models.
Jenkins, A., Ray, L. C., Fell, T., Badman, S. V., & Lorch, C. T. S. (2024). Revealing the local time structure of Alfvén Radii and travel times in the Jovian magnetosphere. Journal of Geophysical Research. https://doi.org/10.17635/lancaster/researchdata/661
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Ogino, T. (2002). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107(A10), 1309. https://doi.org/10.1029/2001ja009146
Khurana, K. K., & Schwarzl, H. K. (2005). Global structure of Jupiter's magnetospheric current sheet. Journal of Geophysical Research, 110(A7), A07227. https://doi.org/10.1029/2004ja010757
Krupp, N., Woch, J., Lagg, A., Roelof, E. C., Williams, D. J., Livi, S., & Wilken, B. (2001). Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere. Planetary and Space Science, 49(3–4), 283–289. https://doi.org/10.1016/s0032-0633(00)00149-5
Kurth, W. S., Mauk, B. H., Elliott, S. S., Gurnett, D. A., Hospodarsky, G. B., Santolik, O., et al. (2018). Whistler mode waves associated with broadband Auroral electron precipitation at Jupiter. Geophysical Research Letters, 45(18), 9372–9379. https://doi.org/10.1029/2018gl078566
Li, S. S., Angelopoulos, V., Runov, A., Zhou, X. Z., McFadden, J., Larson, D., et al. (2011). On the force balance around dipolarization fronts within Bursty bulk flows. Journal of Geophysical Research, 116(A5), A00I35. https://doi.org/10.1029/2010ja015884
Lorch, C. T. S., Ray, L. C., Arridge, C. S., Khurana, K. K., Martin, C. J., & Bader, A. (2020). Local time asymmetries in Jupiter's magnetodisc currents. Journal of Geophysical Research: Space Physics, 125(2), e2019JA027455. https://doi.org/10.1029/2019ja027455
Louarn, P., Andre, N., Jackman, C. M., Kasahara, S., Kronberg, E. A., & Vogt, M. F. (2015). Magnetic reconnection and associated transient phenomena within the magnetospheres of Jupiter and Saturn. Space Science Reviews, 187, 181–227. https://doi.org/10.1007/978-1-4939-3395-2_6
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. Journal of Geophysical Research, 125(3), e2019JA027699. https://doi.org/10.1029/2019ja027699
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter's main aurora. Geophysical Research Letters, 45(3), 1277–1285. https://doi.org/10.1002/2017gl076901
Mauk, B. H., & Saur, J. (2007). Equatorial electron beams and auroral structuring at Jupiter. Journal of Geophysical Research, 112(A10), A10221. https://doi.org/10.1029/2007ja012370
Nichols, J. D., & Cowley, S. W. H. (2003). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Dependence on the effective Ionospheric Pedersen conductivity and Iogenic plasma mass outflow rate. Annales Geophysicae, 21(7), 1419–1441. https://doi.org/10.5194/angeo-21-1419-2003
Pan, D. X., Yao, Z. H., Manners, H., Dunn, W., Bonfond, B., Grodent, D., et al. (2021). Ultralow-frequency waves in driving Jovian aurorae revealed by observations from HST and Juno. Geophysical Research Letters, 48(5), e2020GL091579. https://doi.org/10.1029/2020gl091579
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2010). Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. Journal of Geophysical Research, 115(A9), A09211. https://doi.org/10.1029/2010ja015423
Salveter, A., Saur, J., Clark, G., & Mauk, B. H. (2022). Jovian auroral electron precipitation budget—A statistical analysis of diffuse, Mono-energetic, and broadband auroral electron distributions. Journal of Geophysical Research, 127(8), e2021JA030224. https://doi.org/10.1029/2021ja030224
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research, 123(11), 9560–9573. https://doi.org/10.1029/2018ja025948
Saur, J., Pouquet, A., & Matthaeus, W. H. (2003). An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophysical Research Letters, 30(5), 1260. https://doi.org/10.1029/2002gl015761
Southwood, D. J., & Kivelson, M. G. (2001). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106(A4), 6123–6130. https://doi.org/10.1029/2000ja000236
Tao, C., Kimura, T., Badman, S. V., André, N., Tsuchiya, F., Murakami, G., et al. (2015). Variation of Jupiter's aurora observed by Hisaki/exceed: 2. Estimations of auroral parameters and magnetospheric dynamics. Journal of Geophysical Research, 121(5), 4055–4071. https://doi.org/10.1002/2015ja021272
Vasyliūnas, V. M. (1983). Plasma distribution and flow. Physics of the Jovian magnetosphere, 1, 395–453. https://doi.org/10.1017/cbo9780511564574.013
Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., et al. (2015). Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models. Journal of Geophysical Research, 120(4), 2584–2599. https://doi.org/10.1002/2014ja020729
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115(A6). https://doi.org/10.1029/2009ja015098
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter's auroral features to magnetospheric sources. Journal of Geophysical Research, 116(A3), A03220. https://doi.org/10.1029/2010ja016148
Xu, Y. (2024). Alfvén radius simulation data [Dataset]. OSF. https://doi.org/10.17605/OSF.IO/CEXGH
Xu, Y., Yao, Z. H., Zhang, B., Delamere, P. A., Ray, L. C., Dunn, W. R., et al. (2023). On the relation between Jupiter's aurora and the dawnside current sheet. Geophysical Research Letters, 50(13), e2023GL104123. https://doi.org/10.1029/2023gl104123
Yao, Z., Sun, W. J., Fu, S. Y., Pu, Z. Y., Liu, J., Angelopoulos, V., et al. (2013). Current structures associated with dipolarization fronts. Journal of Geophysical Research, 118(11), 6980–6985. https://doi.org/10.1002/2013ja019290
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020). Reconnection-and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027663. https://doi.org/10.1029/2019ja027663
Yao, Z. H., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., et al. (2022). On the relation between auroral Morphologies and compression conditions of Jupiter's magnetopause: Observations from Juno and the Hubble space telescope. Journal of Geophysical Research, 127(10), e2021JA029894. https://doi.org/10.1029/2021ja029894
Yao, Z. H., Pu, Z. Y., Fu, S. Y., Angelopoulos, V., Kubyshkina, M., Xing, X., et al. (2012). Mechanism of substorm current wedge formation: THEMIS observations. Geophysical Research Letters, 39(13), L13102. https://doi.org/10.1029/2012gl052055
Zhang, B., Delamere, P. A., Ma, X., Burkholder, B., Wiltberger, M., Lyon, J. G., et al. (2018). Asymmetric Kelvin-Helmholtz instability at Jupiter's magnetopause boundary: Implications for corotation-dominated systems. Geophysical Research Letters, 45(1), 56–63. https://doi.org/10.1002/2017gl076315
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter's unusual magnetospheric topology structures its aurora. Science Advances, 7(15), eabd1204. https://doi.org/10.1126/sciadv.abd1204
Zhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., & Wiltberger, M. (2019). GAMERA: A three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries. The Astrophysical Journal - Supplement Series, 244(1), 20. https://doi.org/10.3847/1538-4365/ab3a4c