[en] We report a four-component partial least squares discriminant analysis (PLS) model for the prediction of blood-brain barrier (BBB) permeation using descriptors derived from 3D molecular fields. The 3D fields were transformed by VolSurf into suitable 1D descriptors, which were correlated to the ratio of blood-brain partitioning measured at steady state in rats (log C(brain)/C(blood)). The model so obtained sheds light on molecular properties influencing BBB permeation. It can also be used in the virtual screening of new chemicals.
Disciplines :
Chemistry
Author, co-author :
Ooms, Frédéric ; Université de Liège - ULiège > HEC Liège Research > HEC Liège Research: Strategy & Performance for the Society ; Institut de Chimie Thérapeutique, Section de Pharmacie, BEP, Université de Lausanne, CH-1015, Lausanne, Switzerland
Weber, Peter; Institut de Chimie Thérapeutique, Section de Pharmacie, BEP, Université de Lausanne, CH-1015 Lausanne, Switzerland
Carrupt, Pierre Alain; Institut de Chimie Thérapeutique, Section de Pharmacie, BEP, Université de Lausanne, CH-1015 Lausanne, Switzerland
Testa, Bernard; Institut de Chimie Thérapeutique, Section de Pharmacie, BEP, Université de Lausanne, CH-1015 Lausanne, Switzerland
Language :
English
Title :
A simple model to predict blood-brain barrier permeation from 3D molecular fields.
Van Bree J.B.M.M., De Boer A.G., Danhof M., Breimer D.D. (1992) Drug transport across the blood-brain barrier: I. Anatomical and physiological aspects. Pharm. Weekbl., Sci. Ed. 14:305-310.
Hirase T., Staddon J.M., Saitou M., Ando-Akatsuka Y., Itoh M., Furuse M., Fujimoto K., Tsukita S., Rubin L.L. (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110:1603-1613.
Brightman M.W. (1989) The anatomic basis of the blood-brain barrier. Implications of the Blood-Brain Barrier and Its Manipulation: Volume 1. Basic Science Aspects , E.A. Neuwelt. New York: Plenum; 53-83.
Ter Laak A.M., Tsai R.S., Donné-op den Kelder G.M., Carrupt P.A., Testa B., Timmerman H. (1994) Lipophilicity and hydrogen-bonding capacity of H1-antihistaminic agents in relation to their central sedative side-effects. Eur. J. Pharm. Sci. 2:373-384.
Woods P.B., Robinson M.L. (1981) An investigation of the comparative liposolubilities of β-adrenoceptor blocking agents. J. Pharm. Pharmacol. 33:172-173.
Pagliara A., Reist M., Geinoz S., Carrupt P.A., Testa B. (1999) Evaluation and prediction of drug permeation. J. Pharm. Pharmacol. 51:1339-1357.
Hansch C., Clayton J.M. (1973) Lipophilic character and biological activity of drugs: II. The parabolic case. J. Pharm. Sci. 62:1-21.
Hansch C., Björkroth J.P., Leo A. (1987) Hydrophobicity and central nervous system agents: On the principle of minimal hydrophobicity in drug design. J. Pharm. Sci. 76:663-687.
Dischino D.D., Welch M.J., Kilbourn M.R., Raichle M.E. (1983) Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J. Nucl. Med. 24:1030-1038.
Lombardo F., Blake J.F., Curatolo W.J. (1996) Computation of brain-blood partitioning of organic solutes via free energy calculations. J. Med. Chem. 39:4750-4755.
Young R.C., Ganellin C.R., Griffiths R., Mitchell R.C., Parsons M.E., Saunders D., Sore N.E. (1993) An approach to the design of brain-penetrating histaminergic agonists. Eur. J. Med. Chem. 28:201-211.
Chikhale E.G., Ng K.Y., Burton P.S., Borchardt R.T. (1994) Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm. Res. 11:412-419.
Van de Waterbeemd H., Kansy M. (1992) Hydrogen-bonding capacity and brain penetration. Chimia 46:299-303.
Young R.C., Mitchell R.C., Brown T.H., Ganellin C.R., Griffiths R., Jones M., Rana K.K., Saunders D., Smith I.R., Sore N.E., Wilks T.J. (1988) Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 31:656-671.
Luco J.M. (1999) Prediction of the blain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J. Chem. Inf. Comput. Sci. 39:396-404.
Clark D.E. (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena: 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 88:815-921.
Kelder J., Grootenhuis P.D.J., Bayada D.M., Delbressine L.P.C., Ploemen J.P. (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 16:1514-1519.
Ertl P., Rohde B., Selzer P. (2000) Fast contribution of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport. J. Med. Chem. 43:3714-3717.
Feher M., Sourial E., Schmidt J.M. (2000) A simple model for the prediction of blood-brain partitioning. Int. J. Pharm. 201:239-247.
Norinder U., Sjoberg P., Osterberg T. (1998) Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parameterization and PLS statistics. J. Pharm. Sci. 87:952-959.
Cruciani G., Crivori P., Carrupt P.A., Testa B. (2000) Molecular fields in quantitative structure permeation relationships: The VolSurf approach. J. Mol. Struct., Theochem 503:17-30.
Alifrangis L.H., Christensen I.T., Berglund A., Sandberg M., Hovgaard L., Frokjaer S. (2000) Structure-property model for membrane partitioning of oligopeptides. J. Med. Chem. 43:103-113.
Crivori P., Cruciani G., Carrupt P.A., Testa B. (2000) Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43:2204-2216.
Lin J.H., Chen I.W., Lin T.H. (1994) Blood-brain barrier permeability and in vivo activity of partial agonists of benzodiazepine receptor: A study of L-663,581 and its metabolites in rats. J. Pharmacol. Exp. Ther. 271:1197-1202.
Salminen T., Pulli A., Taskinen J. (1997) Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J. Pharm. Biomed. Anal. 15:469-477.
Abraham M.H., Chadha H.S., Mitchell R.C. (1994) Hydrogen bonding: 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci. 83:1257-1268.
SYBYL 6.4, Tripos Associates, St. Louis, MO; 1995.
Goodford P.J. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28:849-857.