[en] AbstractBamboo (Phyllostachys sp.) is considered a sustainable resource that can replace fossil fuel‐based products. Its additional ability to sequester organic carbon in the soil (SOC) makes it a promising nature‐based solution for combating climate change. However, bamboo's soil C storage potential may vary considerably between species or growing conditions and needs to be better quantified, especially in temperate climates where data are lacking. In the present research, the SOC dynamics of plots converted from grassland to plantations of three bamboo species (i.e. Phyllostachys nigra, Phyllostachys aurea and Phyllostachys aureosulcata), planted 12 years ago on podzol (World Reference Base classification) in the Belgian Campine region, have been studied. Soil and root samples were taken until a depth of 40 cm using a 10 cm interval. Besides, the total belowground C stability (mgCO2‐C g−1 C h−1) was assessed by measuring during 3 months the carbon dioxide (CO2) efflux relative to the belowground C stock. Based on an equivalent soil mass, only P. aureosulcata, the species with the highest culm basal area, had a significant (p < .001) SOC increase of 5.0 kg C m−2 (relative increase of +94%) as compared with grassland. Considering the sum of C stocks in the soil, roots and leaf litter, all bamboo species showed significant (p < .001) C storage, i.e. +3.6 kg C m−2 (+64%), +5.3 kg C m−2 (+94%) and +8.6 kg C m−2 (+151%) for P. nigra, P. aurea and P. aureosulcata, respectively. In addition, bamboo's relative basal CO2 efflux (0.007, 0.006 and 0.008 mgCO2‐C g−1 C h−1, respectively) was remarkably lower than in the grassland (0.012 mgCO2‐C g−1 C h−1), though it was only significant for P. aurea. This study highlights that converting temperate permanent grassland into Phyllostachys bamboo plantation can result in net and rapid organic C storage by increasing the total belowground C stability and C input. Further research regarding the net CO2 balance of bamboo‐derived products is still required to fully assess its climate change mitigation potential.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Kovacs, Nicolas ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Longdoz, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Dincher, Marie ; Université de Liège - ULiège > Département GxABT
Vancampenhout, Karen; Department of Earth and Environmental Sciences KU Leuven, Campus Geel Kleinhoefstraat 4 Geel Belgium
Purwanto, Benito Heru; Department of Soil Science, Faculty of Agriculture Universitas Gadjah Mada Yogyakarta Indonesia
Oprins, Jan; De Kleine Boerderij BV Rijkevorsel Belgium
Peeters, Marc; Bambu Nusa Verde Yogyakarta Indonesia
Meersmans, Jeroen ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Language :
English
Title :
Assessing belowground carbon storage after converting a temperate permanent grassland into a bamboo (<i>Phyllostachys</i>) plantation
Akinlabi, E. T., Anane-Fenin, K., & Akwada, D. R. (2017). Bamboo: The multipurpose plant. Springer International Publishing. https://doi.org/10.1007/978-3-319-56808-9
Amoah, M., Assan, F., & Dadzie, P. K. (2020). Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var.vitata plantations in the Bobiri forest reserve of Ghana. Journal of Sustainable Forestry, 39(2), 113–136. https://doi.org/10.1080/10549811.2019.1608452
Bada, S. O., Falcon, R. M. S., Falcon, L. M., & Bergmann, C. P. (2016). Co-firing potential of raw and thermally treated Phyllostachys aurea bamboo with coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1345–1354. https://doi.org/10.1080/15567036.2014.921739
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., & Hatté, C. (2018). Atmosphere–soil carbon transfer as a function of soil depth. Nature, 559(7715), 599–602. https://doi.org/10.1038/s41586-018-0328-3
Ben-zhi, Z., Mao-yi, F., Jin-zhong, X., Xiao-sheng, Y., & Zheng-cai, L. (2005). Ecological functions of bamboo forest: Research and application. Journal of Forestry Research, 16(2), 143–147. https://doi.org/10.1007/BF02857909
Bispo, A., Andersen, L., Angers, D. A., Bernoux, M., Brossard, M., Cécillon, L., Comans, R. N. J., Harmsen, J., Jonassen, K., Lamé, F., Lhuillery, C., Maly, S., Martin, E., Mcelnea, A. E., Sakai, H., Watabe, Y., & Eglin, T. K. (2017). Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: Do we have the necessary standards? Frontiers in Environmental Science, 5, 41. https://doi.org/10.3389/fenvs.2017.00041
Boitsova, L. V., Neprimerova, S. V., & Zinchuk, E. G. (2023). Sequestration of organic carbon in sod-podzolic Sandy loam soil. Russian Agricultural Sciences, 49(2), 184–188. https://doi.org/10.3103/S1068367423020039
Chen, X., Zhang, X., Zhang, Y., Booth, T., & He, X. (2009). Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management, 258(7), 1489–1496. https://doi.org/10.1016/j.foreco.2009.06.051
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/10.1016/j.still.2018.04.011
Curiel Yuste, J., Janssens, I. A., Carrara, A., & Ceulemans, R. (2004). Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10(2), 161–169. https://doi.org/10.1111/j.1529-8817.2003.00727.x
Davidson, E. A., Janssens, I. A., & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Global Change Biology, 12(2), 154–164. https://doi.org/10.1111/j.1365-2486.2005.01065.x
Desalegn, G., & Tadesse, W. (2014). Resource communication. Resource potential of bamboo, challenges and future directions towards sustainable management and utilization in Ethiopia. Forest Systems, 23(2), 294–299. https://doi.org/10.5424/fs/2014232-03012
Dlamini, L. C., Fakudze, S., Makombe, G. G., Muse, S., & Zhu, J. (2021). Bamboo as a valuable resource and its utilization in historical and modern-day China. BioResources, 17(1), 1926–1938. https://doi.org/10.15376/biores.17.1.Dlamini
Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75(4), 529–538. https://doi.org/10.4141/cjss95-075
FAO. (2020). Global Forest Resources Assessment 2020. FAO. http://www.fao.org/documents/card/en/c/ca9825en
Fu, W., Jiang, P., Zhao, K., Zhou, G., Li, Y., Wu, J., & Du, H. (2014). The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. Journal of Soils and Sediments, 14(2), 320–329. https://doi.org/10.1007/s11368-013-0665-7
Fukushima, K., Usui, N., Ogawa, R., & Tokuchi, N. (2015). Impacts of moso bamboo (Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan. Plant Species Biology, 30(2), 81–95. https://doi.org/10.1111/1442-1984.12066
Gill, R. A., & Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147(1), 13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.x
Gupta, A., & Kumar, A. (2008). Potential of bamboo in sustainable development. Asia Pacific Business Review, 4(3), 100–107. https://doi.org/10.1177/097324700800400312
Hsieh, I.-F., Kume, T., Lin, M.-Y., Cheng, C.-H., & Miki, T. (2016). Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees, 30(5), 1749–1759. https://doi.org/10.1007/s00468-016-1405-6
INBAR. (2021). Trade overview 2019: Bamboo and rattan Commodities in the International Market. International Bamboo and Rattan Organisation.
Inoue, A., Miyazawa, Y., Sato, M., & Shima, H. (2018). Allometric equations for predicting culm surface area of three bamboo species (Phyllostachys spp.). Forests, 9(6), 295. https://doi.org/10.3390/f9060295
Inoue, A., Sakamoto, S., Suga, H., Kitazato, H., & Sakuta, K. (2013). Construction of one-way volume table for the three major useful bamboos in Japan. Journal of Forest Research, 18(4), 323–334. https://doi.org/10.1007/s10310-012-0366-x
Kaushal, R., Tewari, S., Banik, R. L., Thapliyal, S. D., Singh, I., Reza, S., & Durai, J. (2020). Root distribution and soil properties under 12-year old sympodial bamboo plantation in central Himalayan Tarai region, India. Agroforestry Systems, 94(3), 917–932. https://doi.org/10.1007/s10457-019-00459-4
Kawakami, E., Ataka, M., Kume, T., Shimono, K., Harada, M., Hishi, T., & Katayama, A. (2022). Root exudation in a sloping Moso bamboo forest in relation to fine root biomass and traits. PLoS One, 17(3), e0266131. https://doi.org/10.1371/journal.pone.0266131
Kleinhenz, V., & Midmore, D. J. (2001). Aspects of bamboo agronomy. In Advances in agronomy (Vol. 74, pp. 99–153). Elsevier. https://doi.org/10.1016/S0065-2113(01)74032-1
Kuzyakov, Y., & Domanski, G. (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163(4), 421–431.
Li, P., Zhou, G., Du, H., Lu, D., Mo, L., Xu, X., Shi, Y., & Zhou, Y. (2015). Current and potential carbon stocks in Moso bamboo forests in China. Journal of Environmental Management, 156, 89–96. https://doi.org/10.1016/j.jenvman.2015.03.030
Li, Q., Zhou, B. Z., Wang, X. M., Ge, X. G., & Cao, Y. H. (2013). Effects of throughfall exclusion on soil respiration in a Moso bamboo Forest soil in Southeast China. Advanced Materials Research, 726–731, 3762–3766. https://doi.org/10.4028/www.scientific.net/AMR.726-731.3762
Li, Z., & Kobayashi, M. (2004). Plantation future of bamboo in China. Journal of Forestry Research, 15(3), 233–242. https://doi.org/10.1007/BF02911032
Liese, W., & Köhl, M. (Eds.). (2015). Bamboo: The plant and its uses (Vol. 10). Springer International Publishing. https://doi.org/10.1007/978-3-319-14133-6
Lin, Z., Li, Y., Tang, C., Luo, Y., Fu, W., Cai, X., Li, Y., Yue, T., Jiang, P., Hu, S., & Chang, S. X. (2018). Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biology and Fertility of Soils, 54(4), 467–480. https://doi.org/10.1007/s00374-018-1275-8
Lombardo, E. (2022). An overview of bamboo cultivation in southern Italy. Advances in Bamboo Science, 1, 100002. https://doi.org/10.1016/j.bamboo.2022.100002
Lukac, M. (2012). Fine root turnover. In S. Mancuso (Ed.), Measuring Roots (pp. 363–373). Springer. https://doi.org/10.1007/978-3-642-22067-8_18
McNally, S. R., Laughlin, D. C., Rutledge, S., Dodd, M. B., Six, J., & Schipper, L. A. (2015). Root carbon inputs under moderately diverse sward and conventional ryegrass-clover pasture: Implications for soil carbon sequestration. Plant and Soil, 392(1–2), 289–299. https://doi.org/10.1007/s11104-015-2463-z
Meersmans, J., De Ridder, F., Canters, F., De Baets, S., & Van Molle, M. (2008). A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma, 143(1–2), 1–13. https://doi.org/10.1016/j.geoderma.2007.08.025
Meersmans, J., Van Wesemael, B., De Ridder, F., Fallas Dotti, M., De Baets, S., & Van Molle, M. (2009). Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Global Change Biology, 15(11), 2739–2750. https://doi.org/10.1111/j.1365-2486.2009.01855.x
Mestdagh, I., Lootens, P., Van Cleemput, O., & Carlier, L. (2006). Variation in organic-carbon concentration and bulk density in Flemish grassland soils. Journal of Plant Nutrition and Soil Science, 169(5), 616–622. https://doi.org/10.1002/jpln.200521861
Meyer, N., Meyer, H., Welp, G., & Amelung, W. (2018). Soil respiration and its temperature sensitivity (Q10): Rapid acquisition using mid-infrared spectroscopy. Geoderma, 323, 31–40. https://doi.org/10.1016/j.geoderma.2018.02.031
Mikha, M. M., Benjamin, J. G., Halvorson, A. D., & Nielsen, D. C. (2013). Soil carbon changes influenced by soil management and calculation method. Open Journal of Soil Science, 3(2), 123–131. https://doi.org/10.4236/ojss.2013.32014
Pan, C., Zhou, G., Shrestha, A. K., Chen, J., Kozak, R., Li, N., Li, J., He, Y., Sheng, C., & Wang, G. (2023). Bamboo as a nature-based solution (NbS) for climate change mitigation: Biomass, products, and carbon credits. Climate, 11(9), 175. https://doi.org/10.3390/cli11090175
Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., Rapi, B., Marzialetti, P., Hemming, J., & Balendonck, J. (2009). Root zone sensors for irrigation Management in Intensive Agriculture. Sensors, 9(4), 2809–2835. https://doi.org/10.3390/s90402809
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57. https://doi.org/10.1038/nature17174
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Global Change Biology, 17(7), 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x
Potters, G., Schutte, F., Van Goethem, D., De Nollin, S., Samson, R., & Gielis, J. (2013). Bamboo as a crop in Western Europe—A SWOT analysis. Acta Horticulturae, 1003, 89–95. https://doi.org/10.17660/ActaHortic.2013.1003.11
Qin, H., Niu, L., Wu, Q., Chen, J., Li, Y., Liang, C., Xu, Q., Fuhrmann, J. J., & Shen, Y. (2017). Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant and Soil, 420(1–2), 407–421. https://doi.org/10.1007/s11104-017-3415-6
Rocky, B. P., & Thompson, A. J. (2018). Production of natural bamboo fibers-1: Experimental approaches to different processes and analyses. The Journal of the Textile Institute, 109(10), 1381–1391. https://doi.org/10.1080/00405000.2018.1482639
Rovira, P., Sauras-Yera, T., & Romanyà, J. (2022). Equivalent-mass versus fixed-depth as criteria for quantifying soil carbon sequestration: How relevant is the difference? Catena, 214, 106283. https://doi.org/10.1016/j.catena.2022.106283
Schindlbacher, A., Zechmeister-Boltenstern, S., & Jandl, R. (2009). Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology, 15(4), 901–913. https://doi.org/10.1111/j.1365-2486.2008.01757.x
Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2019). Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Advances in Civil Engineering Materials, 8(1), 20180091. https://doi.org/10.1520/ACEM20180091
Tang, X., Fan, S., Qi, L., Guan, F., Su, W., & Du, M. (2016). A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed Moso bamboo forests in subtropical China. Annals of Forest Research, 59(1), 1. https://doi.org/10.15287/afr.2016.497
Xue, P. P., Wang, B., & Niu, X. (2015). Using minirhizotrons to estimate fine root turnover rate as a forest ecosystem health indicator in Moso bamboo forests in Dagang mountain. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 149(4), 747–756. https://doi.org/10.1080/11263504.2013.870247
Yang, C., Ni, H., Zhong, Z., Zhang, X., & Bian, F. (2019). Changes in soil carbon pools and components induced by replacing secondary evergreen broadleaf forest with Moso bamboo plantations in subtropical China. Catena, 180, 309–319. https://doi.org/10.1016/j.catena.2019.02.024
Yuen, J. Q., Fung, T., & Ziegler, A. D. (2017). Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management, 393, 113–138. https://doi.org/10.1016/j.foreco.2017.01.017
Zhou, G., Meng, C., Jiang, P., & Xu, Q. (2011). Review of carbon fixation in bamboo forests in China. The Botanical Review, 77(3), 262–270. https://doi.org/10.1007/s12229-011-9082-z