Black holes; Coordinated universal time; Gravitational-wave signals; Gravitational-waves; Low latency; Neutron stars; Search Algorithms; Stars: black holes; Transient catalogs; Wave transients; Physics and Astronomy (all); General Relativity and Quantum Cosmology; astro-ph.HE
Abstract :
[en] The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star-black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star-black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Abbott, R.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Abbott, T.D.; Louisiana State University, Baton Rouge, United States
Acernese, F.; Dipartimento di Farmacia, Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Ackley, K.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Adams, C.; LIGO Livingston Observatory, Livingston, United States
Adhikari, N.; University of Wisconsin-Milwaukee, Milwaukee, United States
Adhikari, R.X.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Adya, V.B.; OzGrav, Australian National University, Canberra, Australia
Affeldt, C.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Agarwal, D.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Agathos, M.; University of Cambridge, Cambridge, United Kingdom ; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany
Agatsuma, K.; University of Birmingham, Birmingham, United Kingdom
Aggarwal, N.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Aguiar, O.D.; Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
Aiello, L.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Ain, A.; INFN, Sezione di Pisa, Pisa, Italy
Ajith, P.; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
Akcay, S.; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany ; University College Dublin, Ireland
Akutsu, T.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan ; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Albanesi, S.; INFN, Sezione di Torino, Torino, Italy
Allocca, A.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Altin, P.A.; OzGrav, Australian National University, Canberra, Australia
Amato, A.; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
Anand, C.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Anand, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Ananyeva, A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Anderson, S.B.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Anderson, W.G.; University of Wisconsin-Milwaukee, Milwaukee, United States
Ando, M.; Department of Physics, The University of Tokyo, Tokyo, Japan ; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Andrade, T.; Institut de Ciències Del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
Andres, N.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Andrić, T.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Angelova, S.V.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Ansoldi, S.; Dipartimento di Scienze Matematiche Informatiche e Fisiche, Università di Udine, Udine, Italy ; INFN, Sezione di Trieste, Trieste, Italy
Antelis, J.M.; Embry-Riddle Aeronautical University, Prescott, United States
Antier, S.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Appert, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Arai, Koji; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Arai, Koya; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Arai, Y.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Araki, S.; Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Japan
Araya, A.; Earthquake Research Institute, The University of Tokyo, Tokyo, Japan
Araya, M.C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Areeda, J.S.; California State University Fullerton, Fullerton, United States
Arène, M.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Aritomi, N.; Department of Physics, The University of Tokyo, Tokyo, Japan
Arnaud, N.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France ; European Gravitational Observatory (EGO), Pisa, Italy
Arogeti, M.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Aronson, S.M.; Louisiana State University, Baton Rouge, United States
Arun, K.G.; Chennai Mathematical Institute, Chennai, India
Asada, H.; Department of Mathematics and Physics, Gravitational Wave Science Project, Hirosaki University, Hirosaki City, Japan
Asali, Y.; Columbia University, New York, United States
Ashton, G.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Aso, Y.; Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Hida City, Japan ; The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
Assiduo, M.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Aston, S.M.; LIGO Livingston Observatory, Livingston, United States
Astone, P.; INFN, Sezione di Roma, Roma, Italy
Aubin, F.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Austin, C.; Louisiana State University, Baton Rouge, United States
Babak, S.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Badaracco, F.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Bader, M.K.M.; Nikhef, Amsterdam, Netherlands
Badger, C.; King's College London, University of London, London, United Kingdom
Bae, S.; Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
Bae, Y.; National Institute for Mathematical Sciences, Daejeon, South Korea
Baer, A.M.; Christopher Newport University, Newport News, United States
Bagnasco, S.; INFN, Sezione di Torino, Torino, Italy
Bai, Y.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Baiotti, L.; International College, Osaka University, Toyonaka City, Japan
Baird, J.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Bajpai, R.; School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba City, Japan
Ball, M.; University of Oregon, Eugene, United States
Ballardin, G.; European Gravitational Observatory (EGO), Pisa, Italy
Ballmer, S.W.; Syracuse University, Syracuse, United States
Balsamo, A.; Christopher Newport University, Newport News, United States
Baltus, G.; Université de Liège, Liège, Belgium
Banagiri, S.; University of Minnesota, Minneapolis, United States
Bankar, D.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Barayoga, J.C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Barbieri, C.; Università Degli Studi di Milano-Bicocca, Milano, Italy ; INFN, Sezione di Milano-Bicocca, Milano, Italy ; INAF, Osservatorio Astronomico di Brera Sede di Merate, Lecco, Italy
Barish, B.C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Barker, D.; LIGO, Hanford Observatory, Richland, United States
Barneo, P.; Institut de Ciències Del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
Barone, F.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Dipartimento di Medicina, Chirurgia e Odontoiatria Scuola Medica Salernitana, Università di Salerno, Salerno, Italy
Barr, B.; SUPA, University of Glasgow, Glasgow, United Kingdom
Barsotti, L.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Barsuglia, M.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Barta, D.; Wigner RCP, RMKI, Budapest, Hungary
Bartlett, J.; LIGO, Hanford Observatory, Richland, United States
Barton, M.A.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan ; SUPA, University of Glasgow, Glasgow, United Kingdom
Bartos, I.; University of Florida, Gainesville, United States
Bassiri, R.; Stanford University, Stanford, United States
Basti, A.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Bawaj, M.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Perugia, Perugia, Italy
Bayley, J.C.; SUPA, University of Glasgow, Glasgow, United Kingdom
Baylor, A.C.; University of Wisconsin-Milwaukee, Milwaukee, United States
Bazzan, M.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy
Bécsy, B.; Montana State University, Bozeman, United States
Bedakihale, V.M.; Institute for Plasma Research, Gandhinagar, India
Bejger, M.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Belahcene, I.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Benedetto, V.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy
Beniwal, D.; OzGrav, University of Adelaide, Adelaide, Australia
Bennett, T.F.; California State University, Los Angeles, Los Angeles, United States
Bentley, J.D.; University of Birmingham, Birmingham, United Kingdom
Benyaala, M.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Bergamin, F.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Berger, B.K.; Stanford University, Stanford, United States
Berry, C.P.L.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States ; SUPA, University of Glasgow, Glasgow, United Kingdom
Bersanetti, D.; INFN, Sezione di Genova, Genova, Italy
Bertolini, A.; Nikhef, Amsterdam, Netherlands
Betzwieser, J.; LIGO Livingston Observatory, Livingston, United States
Beveridge, D.; OzGrav, University of Western Australia, Crawley, Australia
Bhandare, R.; RRCAT, Indore, India
Bhardwaj, U.; Nikhef, Amsterdam, Netherlands ; GRAPPA, Anton Pannekoek Institute for Astronomy, Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Bhattacharjee, D.; Missouri University of Science and Technology, Rolla, United States
Bhaumik, S.; University of Florida, Gainesville, United States
Bilenko, I.A.; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
Billingsley, G.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Bini, S.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Birney, R.; SUPA, University of the West of Scotland, Paisley, United Kingdom
Birnholtz, O.; Bar-Ilan University, Ramat Gan, Israel
Biscans, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Bischi, M.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Biscoveanu, S.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Bisht, A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Biswas, B.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Bitossi, M.; INFN, Sezione di Pisa, Pisa, Italy ; European Gravitational Observatory (EGO), Pisa, Italy
Bizouard, M.-A.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Blackburn, J.K.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Blair, C.D.; LIGO Livingston Observatory, Livingston, United States ; OzGrav, University of Western Australia, Crawley, Australia
Blair, D.G.; OzGrav, University of Western Australia, Crawley, Australia
Blair, R.M.; LIGO, Hanford Observatory, Richland, United States
Bobba, F.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Bode, N.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Boer, M.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Bogaert, G.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Boldrini, M.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Bonavena, L.D.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy
Bondu, F.; Univ Rennes, CNRS, Institut FOTON-UMR6082, Rennes, France
Bonilla, E.; Stanford University, Stanford, United States
Bonnand, R.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Booker, P.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Boom, B.A.; Nikhef, Amsterdam, Netherlands
Bork, R.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Boschi, V.; INFN, Sezione di Pisa, Pisa, Italy
Bose, N.; Indian Institute of Technology Bombay, Mumbai, India
Bose, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Bossilkov, V.; OzGrav, University of Western Australia, Crawley, Australia
Boudart, Vincent ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Bouffanais, Y.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy
Bozzi, A.; European Gravitational Observatory (EGO), Pisa, Italy
Bradaschia, C.; INFN, Sezione di Pisa, Pisa, Italy
Brady, P.R.; University of Wisconsin-Milwaukee, Milwaukee, United States
Bramley, A.; LIGO Livingston Observatory, Livingston, United States
Branch, A.; LIGO Livingston Observatory, Livingston, United States
Branchesi, M.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Brandt, J.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Brau, J.E.; University of Oregon, Eugene, United States
Breschi, M.; Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany
Briant, T.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Briggs, J.H.; SUPA, University of Glasgow, Glasgow, United Kingdom
Brillet, A.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Brinkmann, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Brockill, P.; University of Wisconsin-Milwaukee, Milwaukee, United States
Brooks, A.F.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Brooks, J.; European Gravitational Observatory (EGO), Pisa, Italy
Brown, D.D.; OzGrav, University of Adelaide, Adelaide, Australia
Brunett, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Bruno, G.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Bruntz, R.; Christopher Newport University, Newport News, United States
Bryant, J.; University of Birmingham, Birmingham, United Kingdom
Buonanno, A.; University of Maryland, College Park, United States ; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Buscicchio, R.; University of Birmingham, Birmingham, United Kingdom
Buskulic, D.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Buy, C.; L2IT, Laboratoire des 2 Infinis-Toulouse, Université de Toulouse, CNRS, IN2P3, UPS, Toulouse, France
Byer, R.L.; Stanford University, Stanford, United States
Davies, G. S. Cabourn; University of Portsmouth, Portsmouth, United Kingdom
Cadonati, L.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Cagnoli, G.; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
Cahillane, C.; LIGO, Hanford Observatory, Richland, United States
Bustillo, J. Calderón; IGFAE, Campus Sur, Universidade de Santiago de Compostela, Spain ; The Chinese University of Hong Kong, Shatin, Hong Kong
Callaghan, J.D.; SUPA, University of Glasgow, Glasgow, United Kingdom
Callister, T.A.; Stony Brook University, Stony Brook, United States ; Center for Computational Astrophysics, Flatiron Institute, New York, United States
Calloni, E.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Cameron, J.; OzGrav, University of Western Australia, Crawley, Australia
Camp, J.B.; NASA Goddard Space Flight Center, Greenbelt, United States
Canepa, M.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
Canevarolo, S.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Cannavacciuolo, M.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy
Cannon, K.C.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Cao, H.; OzGrav, University of Adelaide, Adelaide, Australia
Cao, Z.; Department of Astronomy, Beijing Normal University, Beijing, China
Capocasa, E.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Capote, E.; Syracuse University, Syracuse, United States
Carapella, G.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Carbognani, F.; European Gravitational Observatory (EGO), Pisa, Italy
Carlin, J.B.; OzGrav, University of Melbourne, Parkville, Australia
Carney, M.F.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Carpinelli, M.; European Gravitational Observatory (EGO), Pisa, Italy ; Università Degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali Del Sud, Catania, Italy
Carrillo, G.; University of Oregon, Eugene, United States
Carullo, G.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Carver, T.L.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Diaz, J. Casanueva; European Gravitational Observatory (EGO), Pisa, Italy
Casentini, C.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Castaldi, G.; University of Sannio at Benevento, Benevento, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Caudill, S.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Cavaglià, M.; Missouri University of Science and Technology, Rolla, United States
Cavalier, F.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Cavalieri, R.; European Gravitational Observatory (EGO), Pisa, Italy
Ceasar, M.; Villanova University, Villanova, United States
Cella, G.; INFN, Sezione di Pisa, Pisa, Italy
Cerdá-Durán, P.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Cesarini, E.; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Chaibi, W.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Chakravarti, K.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Subrahmanya, S. Chalathadka; Universität Hamburg, Hamburg, Germany
Champion, E.; Rochester Institute of Technology, Rochester, United States
Chan, C.-H.; National Tsing Hua University, Hsinchu City, Taiwan
Chan, C.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Chan, C.L.; The Chinese University of Hong Kong, Shatin, Hong Kong
Chan, K.; The Chinese University of Hong Kong, Shatin, Hong Kong
Chan, M.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Chandra, K.; Indian Institute of Technology Bombay, Mumbai, India
Chanial, P.; European Gravitational Observatory (EGO), Pisa, Italy
Chao, S.; National Tsing Hua University, Hsinchu City, Taiwan
Chapman-Bird, C.E.A.; SUPA, University of Glasgow, Glasgow, United Kingdom
Charlton, P.; OzGrav, Charles Sturt University, Wagga Wagga, Australia
Chase, E.A.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Chassande-Mottin, E.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Chatterjee, C.; OzGrav, University of Western Australia, Crawley, Australia
Chatterjee, Debarati; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Chatterjee, Deep; University of Wisconsin-Milwaukee, Milwaukee, United States
Chaturvedi, M.; RRCAT, Indore, India
Chaty, S.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Chatziioannou, K.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Chen, C.; Department of Physics, Tamkang University, New Taipei City, Taiwan ; Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan
Chen, H.Y.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Chen, J.; National Tsing Hua University, Hsinchu City, Taiwan
Chen, K.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Chen, X.; OzGrav, University of Western Australia, Crawley, Australia
Chen, Y.-B.; CaRT, California Institute of Technology, Pasadena, United States
Chen, Y.-R.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Chen, Z.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Cheng, H.; University of Florida, Gainesville, United States
Cheong, C.K.; The Chinese University of Hong Kong, Shatin, Hong Kong
Cheung, H.Y.; The Chinese University of Hong Kong, Shatin, Hong Kong
Chia, H.Y.; University of Florida, Gainesville, United States
Chiadini, F.; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, Salerno, Italy
Chiang, C.-Y.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Chiarini, G.; INFN, Sezione di Padova, Padova, Italy
Chierici, R.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Chincarini, A.; INFN, Sezione di Genova, Genova, Italy
Chiofalo, M.L.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Chiummo, A.; European Gravitational Observatory (EGO), Pisa, Italy
Cho, G.; Seoul National University, Seoul, South Korea
Cho, H.S.; Pusan National University, Busan, South Korea
Choudhary, R.K.; OzGrav, University of Western Australia, Crawley, Australia
Choudhary, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Christensen, N.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Chu, H.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Chu, Q.; OzGrav, University of Western Australia, Crawley, Australia
Chu, Y.-K.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Chua, S.; OzGrav, Australian National University, Canberra, Australia
Chung, K.W.; King's College London, University of London, London, United Kingdom
Ciani, G.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy
Ciecielag, P.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Cieślar, M.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Cifaldi, M.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Ciobanu, A.A.; OzGrav, University of Adelaide, Adelaide, Australia
Ciolfi, R.; INFN, Sezione di Padova, Padova, Italy ; INAF, Osservatorio Astronomico di Padova, Padova, Italy
Cipriano, F.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Cirone, A.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
Clara, F.; LIGO, Hanford Observatory, Richland, United States
Clark, E.N.; University of Arizona, Tucson, United States
Clark, J.A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; School of Physics, Georgia Institute of Technology, Atlanta, United States
Clarke, L.; Rutherford Appleton Laboratory, Didcot, United Kingdom
Clearwater, P.; OzGrav, Swinburne University of Technology, Hawthorn, Australia
Clesse, S.; Université Libre de Bruxelles, Bruxelles, Belgium
Cleva, F.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Coccia, E.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Codazzo, E.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Cohadon, P.-F.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Cohen, D.E.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Cohen, L.; Louisiana State University, Baton Rouge, United States
Colleoni, M.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems ; Université Libre de Bruxelles, Brussels, Belgium
Colombo, A.; Università Degli Studi di Milano-Bicocca, Milano, Italy
Colpi, M.; Università Degli Studi di Milano-Bicocca, Milano, Italy ; INFN, Sezione di Milano-Bicocca, Milano, Italy
Compton, C.M.; LIGO, Hanford Observatory, Richland, United States
Constancio, M.; Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
Conti, L.; INFN, Sezione di Padova, Padova, Italy
Cooper, S.J.; University of Birmingham, Birmingham, United Kingdom
Corban, P.; LIGO Livingston Observatory, Livingston, United States
Corbitt, T.R.; Louisiana State University, Baton Rouge, United States
Cordero-Carrión, I.; Departamento de Matemáticas, Universitat de València, València, Spain
Corezzi, S.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Perugia, Perugia, Italy
Corley, K.R.; Columbia University, New York, United States
Cornish, N.; Montana State University, Bozeman, United States
Corre, D.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Corsi, A.; Texas Tech University, Lubbock, United States
Cortese, S.; European Gravitational Observatory (EGO), Pisa, Italy
Costa, C.A.; Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
Cotesta, R.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Coughlin, M.W.; University of Minnesota, Minneapolis, United States
Coulon, J.-P.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Countryman, S.T.; Columbia University, New York, United States
Cousins, B.; The Pennsylvania State University, University Park, United States
Couvares, P.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Coward, D.M.; OzGrav, University of Western Australia, Crawley, Australia
Cowart, M.J.; LIGO Livingston Observatory, Livingston, United States
Coyne, D.C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Coyne, R.; University of Rhode Island, Kingston, United States
Creighton, J.D.E.; University of Wisconsin-Milwaukee, Milwaukee, United States
Creighton, T.D.; The University of Texas Rio Grande Valley, Brownsville, United States
Criswell, A.W.; University of Minnesota, Minneapolis, United States
Croquette, M.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Crowder, S.G.; Bellevue College, Bellevue, United States
Cudell, Jean-René ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Interactions fondamentales en physique et astrophysique (IFPA)
Cullen, T.J.; Louisiana State University, Baton Rouge, United States
Cumming, A.; SUPA, University of Glasgow, Glasgow, United Kingdom
Cummings, R.; SUPA, University of Glasgow, Glasgow, United Kingdom
Cunningham, L.; SUPA, University of Glasgow, Glasgow, United Kingdom
Cuoco, E.; INFN, Sezione di Pisa, Pisa, Italy ; European Gravitational Observatory (EGO), Pisa, Italy ; Scuola Normale Superiore, Pisa, Italy
Curyło, M.; Astronomical Observatory Warsaw University, Warsaw, Poland
Dabadie, P.; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
Canton, T. Dal; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Dall'Osso, S.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Dálya, G.; MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest, Hungary
Dana, A.; Stanford University, Stanford, United States
Daneshgaranbajastani, L.M.; California State University, Los Angeles, Los Angeles, United States
D'Angelo, B.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
D'Antonio, S.; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Danzmann, K.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Darsow-Fromm, C.; Universität Hamburg, Hamburg, Germany
Dasgupta, A.; Institute for Plasma Research, Gandhinagar, India
Datrier, L.E.H.; SUPA, University of Glasgow, Glasgow, United Kingdom
Dattilo, V.; European Gravitational Observatory (EGO), Pisa, Italy
Dave, I.; RRCAT, Indore, India
Davier, M.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Davis, D.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Davis, M.C.; Villanova University, Villanova, United States
Daw, E.J.; The University of Sheffield, Sheffield, United Kingdom
De Alarcón, P.F.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Dean, R.; Villanova University, Villanova, United States
Debra, D.; Stanford University, Stanford, United States
Deenadayalan, M.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Degallaix, J.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
De Laurentis, M.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Deléglise, S.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Del Favero, V.; Rochester Institute of Technology, Rochester, United States
De Lillo, F.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
De Lillo, N.; SUPA, University of Glasgow, Glasgow, United Kingdom
Del Pozzo, W.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Demarchi, L.M.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
De Matteis, F.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
D'Emilio, V.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Demos, N.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Dent, T.; IGFAE, Campus Sur, Universidade de Santiago de Compostela, Spain
Depasse, A.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
De Pietri, R.; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy ; INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parma, Italy
De Rosa, R.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
De Rossi, C.; European Gravitational Observatory (EGO), Pisa, Italy
Desalvo, R.; University of Sannio at Benevento, Benevento, Italy
De Simone, R.; Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, Salerno, Italy
Dhurandhar, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Díaz, M.C.; The University of Texas Rio Grande Valley, Brownsville, United States
Diaz-Ortiz, M.; University of Florida, Gainesville, United States
Didio, N.A.; Syracuse University, Syracuse, United States
Dietrich, T.; Nikhef, Amsterdam, Netherlands ; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Di Fiore, L.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Di Fronzo, C.; University of Birmingham, Birmingham, United Kingdom
Di Giorgio, C.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Di Giovanni, F.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Di Giovanni, M.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Di Girolamo, T.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Di Lieto, A.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Ding, B.; Université Libre de Bruxelles, Brussels, Belgium
Di Pace, S.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Di Palma, I.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Di Renzo, F.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Divakarla, A.K.; University of Florida, Gainesville, United States
Dmitriev, A.; University of Birmingham, Birmingham, United Kingdom
Doctor, Z.; University of Oregon, Eugene, United States
D'Onofrio, L.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Donovan, F.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Dooley, K.L.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Doravari, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Dorrington, I.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Drago, M.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Driggers, J.C.; LIGO, Hanford Observatory, Richland, United States
Drori, Y.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Ducoin, J.-G.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Dupej, P.; SUPA, University of Glasgow, Glasgow, United Kingdom
Durante, O.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
D'Urso, D.; Università Degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali Del Sud, Catania, Italy
Duverne, P.-A.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Dwyer, S.E.; LIGO, Hanford Observatory, Richland, United States
Eassa, C.; LIGO, Hanford Observatory, Richland, United States
Easter, P.J.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Ebersold, M.; Physik-Institut, University of Zurich, Zurich, Switzerland
Eckhardt, T.; Universität Hamburg, Hamburg, Germany
Eddolls, G.; SUPA, University of Glasgow, Glasgow, United Kingdom
Edelman, B.; University of Oregon, Eugene, United States
Edo, T.B.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Edy, O.; University of Portsmouth, Portsmouth, United Kingdom
Effler, A.; LIGO Livingston Observatory, Livingston, United States
Eguchi, S.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Eichholz, J.; OzGrav, Australian National University, Canberra, Australia
Eikenberry, S.S.; University of Florida, Gainesville, United States
Eisenmann, M.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Eisenstein, R.A.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Ejlli, A.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Engelby, E.; California State University Fullerton, Fullerton, United States
Enomoto, Y.; Department of Physics, The University of Tokyo, Tokyo, Japan
Errico, L.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Essick, R.C.; University of Chicago, Chicago, United States
Estellés, H.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Estevez, D.; Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
Etienne, Z.; West Virginia University, Morgantown, United States
Etzel, T.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Evans, M.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Evans, T.M.; LIGO Livingston Observatory, Livingston, United States
Ewing, B.E.; The Pennsylvania State University, University Park, United States
Fafone, V.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Fair, H.; Syracuse University, Syracuse, United States
Fairhurst, S.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Farah, A.M.; University of Chicago, Chicago, United States
Farinon, S.; INFN, Sezione di Genova, Genova, Italy
Farr, B.; University of Oregon, Eugene, United States
Farr, W.M.; Stony Brook University, Stony Brook, United States ; Center for Computational Astrophysics, Flatiron Institute, New York, United States
Farrow, N.W.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Fauchon-Jones, E.J.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Favaro, G.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy
Favata, M.; Montclair State University, Montclair, United States
Fays, Maxime ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Fazio, M.; Colorado State University, Fort Collins, United States
Feicht, J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Fejer, M.M.; Stanford University, Stanford, United States
Fenyvesi, E.; Wigner RCP, RMKI, Budapest, Hungary ; Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary
Ferguson, D.L.; Department of Physics, University of Texas, Austin, United States
Fernandez-Galiana, A.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Ferrante, I.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Ferreira, T.A.; Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
Fidecaro, F.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Fiori, I.; European Gravitational Observatory (EGO), Pisa, Italy
Fishbach, M.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Fisher, R.P.; Christopher Newport University, Newport News, United States
Fittipaldi, R.; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; CNR-SPIN, C/o Università di Salerno, Salerno, Italy
Fiumara, V.; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Scuola di Ingegneria, Università della Basilicata, Potenza, Italy
Flaminio, R.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan ; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Floden, E.; University of Minnesota, Minneapolis, United States
Fong, H.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Font, J.A.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain ; Observatori Astronòmic, Universitat de València, València, Spain
Fornal, B.; The University of Utah, Salt Lake City, United States
Forsyth, P.W.F.; OzGrav, Australian National University, Canberra, Australia
Franke, A.; Universität Hamburg, Hamburg, Germany
Frasca, S.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Frasconi, F.; INFN, Sezione di Pisa, Pisa, Italy
Frederick, C.; Kenyon College, Gambier, United States
Freed, J.P.; Embry-Riddle Aeronautical University, Prescott, United States
Frei, Z.; MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest, Hungary
Ganapathy, D.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Ganguly, A.; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
Gao, D.; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China
Gaonkar, S.G.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Garaventa, B.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
García, F.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
García-Núñez, C.; SUPA, University of the West of Scotland, Paisley, United Kingdom
García-Quirós, C.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Garufi, F.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Gateley, B.; LIGO, Hanford Observatory, Richland, United States
Gaudio, S.; Embry-Riddle Aeronautical University, Prescott, United States
Gayathri, V.; University of Florida, Gainesville, United States
Ge, G.-G.; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China
Gemme, G.; INFN, Sezione di Genova, Genova, Italy
Gennai, A.; INFN, Sezione di Pisa, Pisa, Italy
George, J.; RRCAT, Indore, India
George, R.N.; Department of Physics, University of Texas, Austin, United States
Gerberding, O.; Universität Hamburg, Hamburg, Germany
Gergely, L.; University of Szeged, Szeged, Hungary
Gewecke, P.; Universität Hamburg, Hamburg, Germany
Ghonge, S.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Ghosh, Abhirup; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Ghosh, Shaon; University of Wisconsin-Milwaukee, Milwaukee, United States ; Montclair State University, Montclair, United States
Ghosh, Shrobana; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Giacomazzo, B.; Università Degli Studi di Milano-Bicocca, Milano, Italy ; INFN, Sezione di Milano-Bicocca, Milano, Italy ; INAF, Osservatorio Astronomico di Brera Sede di Merate, Lecco, Italy
Giacoppo, L.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Giaime, J.A.; Louisiana State University, Baton Rouge, United States ; LIGO Livingston Observatory, Livingston, United States
Giardina, K.D.; LIGO Livingston Observatory, Livingston, United States
Gibson, D.R.; SUPA, University of the West of Scotland, Paisley, United Kingdom
Gier, C.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Giesler, M.; Cornell University, Ithaca, United States
Giri, P.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Gissi, F.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy
Glanzer, J.; Louisiana State University, Baton Rouge, United States
Gleckl, A.E.; California State University Fullerton, Fullerton, United States
Godwin, P.; The Pennsylvania State University, University Park, United States
Goetz, E.; University of British Columbia, Vancouver, Canada
Goetz, R.; University of Florida, Gainesville, United States
Gohlke, N.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Golomb, J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Goncharov, B.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia ; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
González, G.; Louisiana State University, Baton Rouge, United States
Gopakumar, A.; Tata Institute of Fundamental Research, Mumbai, India
Gosselin, M.; European Gravitational Observatory (EGO), Pisa, Italy
Gouaty, R.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Gould, D.W.; OzGrav, Australian National University, Canberra, Australia
Grace, B.; OzGrav, Australian National University, Canberra, Australia
Grado, A.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; INAF, Osservatorio Astronomico di Capodimonte, Napoli, Italy
Granata, M.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Granata, V.; Dipartimento di Fisica "e.R. Caianiello", Università di Salerno, Salerno, Italy
Grant, A.; SUPA, University of Glasgow, Glasgow, United Kingdom
Gras, S.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Grassia, P.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Gray, C.; LIGO, Hanford Observatory, Richland, United States
Gray, R.; SUPA, University of Glasgow, Glasgow, United Kingdom
Greco, G.; INFN, Sezione di Perugia, Perugia, Italy
Green, A.C.; University of Florida, Gainesville, United States
Green, R.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Gretarsson, A.M.; Embry-Riddle Aeronautical University, Prescott, United States
Gretarsson, E.M.; Embry-Riddle Aeronautical University, Prescott, United States
Griffith, D.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Griffiths, W.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Griggs, H.L.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Grignani, G.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Perugia, Perugia, Italy
Grimaldi, A.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Grimm, S.J.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Grote, H.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Grunewald, S.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Gruning, P.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Guerra, D.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Guidi, G.M.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Guimaraes, A.R.; Louisiana State University, Baton Rouge, United States
Guixé, G.; Institut de Ciències Del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
Gulati, H.K.; Institute for Plasma Research, Gandhinagar, India
Guo, H.-K.; The University of Utah, Salt Lake City, United States
Guo, Y.; Nikhef, Amsterdam, Netherlands
Gupta, Anchal; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Gupta, Anuradha; The University of Mississippi, United States
Gupta, P.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Gustafson, E.K.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Gustafson, R.; University of Michigan, Ann Arbor, United States
Guzman, F.; Texas A&M University, College Station, United States
Ha, S.; Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Haegel, L.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Hagiwara, A.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan ; Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Japan
Haino, S.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Halim, O.; INFN, Sezione di Trieste, Trieste, Italy ; Dipartimento di Fisica, Università di Trieste, Trieste, Italy
Hall, E.D.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Hamilton, E.Z.; Physik-Institut, University of Zurich, Zurich, Switzerland
Hammond, G.; SUPA, University of Glasgow, Glasgow, United Kingdom
Han, W.-B.; Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China
Haney, M.; Physik-Institut, University of Zurich, Zurich, Switzerland
Hanks, J.; LIGO, Hanford Observatory, Richland, United States
Hanna, C.; The Pennsylvania State University, University Park, United States
Hannam, M.D.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Hannuksela, O.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Hansen, H.; LIGO, Hanford Observatory, Richland, United States
Hansen, T.J.; Embry-Riddle Aeronautical University, Prescott, United States
Hanson, J.; LIGO Livingston Observatory, Livingston, United States
Harder, T.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Hardwick, T.; Louisiana State University, Baton Rouge, United States
Haris, K.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Harms, J.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Harry, G.M.; American University, Washington, United States
Harry, I.W.; University of Portsmouth, Portsmouth, United Kingdom
Hartwig, D.; Universität Hamburg, Hamburg, Germany
Hasegawa, K.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Haskell, B.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Hasskew, R.K.; LIGO Livingston Observatory, Livingston, United States
Haster, C.-J.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Hattori, K.; Faculty of Science, University of Toyama, Toyama City, Japan
Haughian, K.; SUPA, University of Glasgow, Glasgow, United Kingdom
Hayakawa, H.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Hayama, K.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Hayes, F.J.; SUPA, University of Glasgow, Glasgow, United Kingdom
Healy, J.; Rochester Institute of Technology, Rochester, United States
Heidmann, A.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Heidt, A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Heintze, M.C.; LIGO Livingston Observatory, Livingston, United States
Heinze, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Heinzel, J.; Carleton College, Northfield, United States
Heitmann, H.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Hellman, F.; University of California, Berkeley, United States
Hello, P.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Helmling-Cornell, A.F.; University of Oregon, Eugene, United States
Hemming, G.; European Gravitational Observatory (EGO), Pisa, Italy
Hendry, M.; SUPA, University of Glasgow, Glasgow, United Kingdom
Heng, I.S.; SUPA, University of Glasgow, Glasgow, United Kingdom
Hernandez, A.G.; California State University, Los Angeles, Los Angeles, United States
Hernandez Vivanco, F.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Heurs, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Hill, P.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Himemoto, Y.; College of Industrial Technology, Nihon University, Narashino City, Japan
Hines, A.S.; Texas A&M University, College Station, United States
Hiranuma, Y.; Graduate School of Science and Technology, Niigata University, Niigata City, Japan
Hirata, N.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Hirose, E.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Hochheim, S.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Hofman, D.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Hohmann, J.N.; Universität Hamburg, Hamburg, Germany
Holcomb, D.G.; Villanova University, Villanova, United States
Holland, N.A.; OzGrav, Australian National University, Canberra, Australia
Holley-Bockelmann, K.; Vanderbilt University, Nashville, United States
Hollows, I.J.; The University of Sheffield, Sheffield, United Kingdom
Holmes, Z.J.; OzGrav, University of Adelaide, Adelaide, Australia
Holt, K.; LIGO Livingston Observatory, Livingston, United States
Holz, D.E.; University of Chicago, Chicago, United States
Hong, Z.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Hopkins, P.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Hough, J.; SUPA, University of Glasgow, Glasgow, United Kingdom
Hourihane, S.; CaRT, California Institute of Technology, Pasadena, United States
Howell, E.J.; OzGrav, University of Western Australia, Crawley, Australia
Hoy, C.G.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Hoyland, D.; University of Birmingham, Birmingham, United Kingdom
Hreibi, A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Hsieh, B.-H.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Hsu, Y.; National Tsing Hua University, Hsinchu City, Taiwan
Huang, G.-Z.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Huang, H.-Y.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Huang, P.; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China
Huang, Y.-C.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Huang, Y.-J.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Huang, Y.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Hübner, M.T.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Huddart, A.D.; Rutherford Appleton Laboratory, Didcot, United Kingdom
Hughey, B.; Embry-Riddle Aeronautical University, Prescott, United States
Hui, D.C.Y.; Astronomy & Space Science, Chungnam National University, Daejeon, South Korea
Hui, V.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Husa, S.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Huttner, S.H.; SUPA, University of Glasgow, Glasgow, United Kingdom
Huxford, R.; The Pennsylvania State University, University Park, United States
Huynh-Dinh, T.; LIGO Livingston Observatory, Livingston, United States
Ide, S.; Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara City, Japan
Iess, A.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Ikenoue, B.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Imam, S.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Inayoshi, K.; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Ingram, C.; OzGrav, University of Adelaide, Adelaide, Australia
Inoue, Y.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Ioka, K.; Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kyoto City, Japan
Isi, M.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Isleif, K.; Universität Hamburg, Hamburg, Germany
Ito, K.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Itoh, Y.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan ; Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka City, Japan
Iyer, B.R.; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
Izumi, K.; Institute of Space and Astronautical Science (JAXA), Sagamihara City, Japan
Jaberianhamedan, V.; OzGrav, University of Western Australia, Crawley, Australia
Jacqmin, T.; Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, Paris, France
Jadhav, S.J.; Directorate of Construction, Services & Estate Management, Mumbai, India
Jadhav, S.P.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
James, A.L.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Jan, A.Z.; Rochester Institute of Technology, Rochester, United States
Jani, K.; Vanderbilt University, Nashville, United States
Janquart, J.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Janssens, K.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France ; Universiteit Antwerpen, Antwerpen, Belgium
Janthalur, N.N.; Directorate of Construction, Services & Estate Management, Mumbai, India
Jaranowski, P.; University of Białystok, Białystok, Poland
Jariwala, D.; University of Florida, Gainesville, United States
Jaume, R.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Jenkins, A.C.; King's College London, University of London, London, United Kingdom
Jenner, K.; OzGrav, University of Adelaide, Adelaide, Australia
Jeon, C.; Department of Physics, Ewha Womans University, Seoul, South Korea
Jeunon, M.; University of Minnesota, Minneapolis, United States
Jia, W.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Jin, H.-B.; National Astronomical Observatories, Chinese Academic of Sciences, Beijing, China ; School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, China
Johns, G.R.; Christopher Newport University, Newport News, United States
Johnson-Mcdaniel, N.K.; The University of Mississippi, United States
Jones, A.W.; OzGrav, University of Western Australia, Crawley, Australia
Jones, D.I.; University of Southampton, Southampton, United Kingdom
Jones, J.D.; LIGO, Hanford Observatory, Richland, United States
Jones, P.; University of Birmingham, Birmingham, United Kingdom
Jones, R.; SUPA, University of Glasgow, Glasgow, United Kingdom
Jonker, R.J.G.; Nikhef, Amsterdam, Netherlands
Ju, L.; OzGrav, University of Western Australia, Crawley, Australia
Jung, P.; National Institute for Mathematical Sciences, Daejeon, South Korea
Jung, K.; Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Junker, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Juste, V.; Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
Kaihotsu, K.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Kajita, T.; Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa City, Japan
Kakizaki, M.; Faculty of Science, University of Toyama, Toyama City, Japan
Kalaghatgi, C.V.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Kalogera, V.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Kamai, B.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Kamiizumi, M.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Kanda, N.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan ; Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka City, Japan
Kandhasamy, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Kang, G.; Chung-Ang University, Seoul, South Korea
Kanner, J.B.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Kao, Y.; National Tsing Hua University, Hsinchu City, Taiwan
Kapadia, S.J.; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
Kapasi, D.P.; OzGrav, Australian National University, Canberra, Australia
Karat, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Karathanasis, C.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Karki, S.; Missouri University of Science and Technology, Rolla, United States
Kashyap, R.; The Pennsylvania State University, University Park, United States
Kasprzack, M.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Kastaun, W.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Katsanevas, S.; European Gravitational Observatory (EGO), Pisa, Italy
Katsavounidis, E.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Katzman, W.; LIGO Livingston Observatory, Livingston, United States
Kaur, T.; OzGrav, University of Western Australia, Crawley, Australia
Kawabe, K.; LIGO, Hanford Observatory, Richland, United States
Kawaguchi, K.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Kawai, N.; Graduate School of Science, Tokyo Institute of Technology, Tokyo, Japan
Kawasaki, T.; Department of Physics, The University of Tokyo, Tokyo, Japan
Kéfélian, F.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Keitel, D.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Key, J.S.; University of Washington Bothell, Bothell, United States
Khadka, S.; Stanford University, Stanford, United States
Khalili, F.Y.; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
Khan, S.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Khazanov, E.A.; Institute of Applied Physics, Nizhny Novgorod, Russian Federation
Khetan, N.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Khursheed, M.; RRCAT, Indore, India
Kijbunchoo, N.; OzGrav, Australian National University, Canberra, Australia
Kim, C.; Ewha Womans University, Seoul, South Korea
Kim, J.C.; Inje University Gimhae, South Gyeongsang, South Korea
Kim, J.; Department of Physics, Myongji University, Yongin, South Korea
Kim, K.; Korea Astronomy and Space Science Institute, Daejeon, South Korea
Kim, W.S.; National Institute for Mathematical Sciences, Daejeon, South Korea
Kim, Y.-M.; Ulsan National Institute of Science and Technology, Ulsan, South Korea
Kimball, C.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Kimura, N.; Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Japan
Kinley-Hanlon, M.; SUPA, University of Glasgow, Glasgow, United Kingdom
Kirchhoff, R.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Kissel, J.S.; LIGO, Hanford Observatory, Richland, United States
Kita, N.; Department of Physics, The University of Tokyo, Tokyo, Japan
Kitazawa, H.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Kleybolte, L.; Universität Hamburg, Hamburg, Germany
Klimenko, S.; University of Florida, Gainesville, United States
Knee, A.M.; University of British Columbia, Vancouver, Canada
Knowles, T.D.; West Virginia University, Morgantown, United States
Knyazev, E.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Koch, P.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Kojima, Y.; Department of Physical Science, Hiroshima University, Higashihiroshima City, Japan
Kokeyama, K.; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
Koley, S.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy
Kolitsidou, P.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Kolstein, M.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Komori, K.; Department of Physics, The University of Tokyo, Tokyo, Japan ; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Kondrashov, V.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Kong, A.K.H.; Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan
Kontos, A.; Bard College, Annandale-On-Hudson, United States
Koper, N.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Korobko, M.; Universität Hamburg, Hamburg, Germany
Kotake, K.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Kovalam, M.; OzGrav, University of Western Australia, Crawley, Australia
Kozak, D.B.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Kozakai, C.; Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Hida City, Japan
Kozu, R.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Kringel, V.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Krishnendu, N.V.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Królak, A.; Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland ; National Center for Nuclear Research, Świerk, Poland
Kuehn, G.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Kuei, F.; National Tsing Hua University, Hsinchu City, Taiwan
Kuijer, P.; Nikhef, Amsterdam, Netherlands
Kulkarni, S.; The University of Mississippi, United States
Kumar, A.; Directorate of Construction, Services & Estate Management, Mumbai, India
Kumar, P.; Cornell University, Ithaca, United States
Kumar, Rahul; LIGO, Hanford Observatory, Richland, United States
Kumar, Rakesh; Institute for Plasma Research, Gandhinagar, India
Kume, J.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Kuns, K.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Kuo, C.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Kuo, H.-S.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Kuromiya, Y.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Kuroyanagi, S.; Instituto de Fisica Teorica UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain ; Department of Physics, Nagoya University, Nagoya, Japan
Kusayanagi, K.; Graduate School of Science, Tokyo Institute of Technology, Tokyo, Japan
Kuwahara, S.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Kwak, K.; Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Lagabbe, P.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Laghi, D.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Lalande, E.; Université de Montréal/Polytechnique, Montreal, Canada
Lam, T.L.; The Chinese University of Hong Kong, Shatin, Hong Kong
Lamberts, A.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France ; Laboratoire Lagrange, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, F-06304 Nice, France
Landry, M.; LIGO, Hanford Observatory, Richland, United States
Lane, B.B.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Lang, R.N.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Lange, J.; Department of Physics, University of Texas, Austin, United States
Lantz, B.; Stanford University, Stanford, United States
La Rosa, I.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Lartaux-Vollard, A.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Lasky, P.D.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Laxen, M.; LIGO Livingston Observatory, Livingston, United States
Lazzarini, A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Lazzaro, C.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy
Leaci, P.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Leavey, S.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Lecoeuche, Y.K.; University of British Columbia, Vancouver, Canada
Lee, H.K.; Department of Physics, Hanyang University, Seoul, South Korea
Lee, H.M.; Seoul National University, Seoul, South Korea
Lee, H.W.; Inje University Gimhae, South Gyeongsang, South Korea
Lee, J.; Seoul National University, Seoul, South Korea
Lee, K.; Sungkyunkwan University, Seoul, South Korea
Lee, R.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Lehmann, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Lemaître, A.; NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
Leonardi, M.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Leroy, N.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Letendre, N.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Levesque, C.; Université de Montréal/Polytechnique, Montreal, Canada
Levin, Y.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Leviton, J.N.; University of Michigan, Ann Arbor, United States
Leyde, K.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Li, A.K.Y.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Li, B.; National Tsing Hua University, Hsinchu City, Taiwan
Li, J.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Li, K.L.; Department of Physics, National Cheng Kung University, Tainan City, Taiwan
Li, T.G.F.; The Chinese University of Hong Kong, Shatin, Hong Kong
Li, X.; CaRT, California Institute of Technology, Pasadena, United States
Lin, C.-Y.; National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu City, Taiwan
Lin, F.-K.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Lin, F.-L.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Lin, H.L.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Lin, L.C.-C.; Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
Linde, F.; Nikhef, Amsterdam, Netherlands ; Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Linker, S.D.; California State University, Los Angeles, Los Angeles, United States
Linley, J.N.; SUPA, University of Glasgow, Glasgow, United Kingdom
Littenberg, T.B.; NASA Marshall Space Flight Center, Huntsville, United States
Liu, G.C.; Department of Physics, Tamkang University, New Taipei City, Taiwan
Liu, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Liu, K.; National Tsing Hua University, Hsinchu City, Taiwan
Liu, X.; University of Wisconsin-Milwaukee, Milwaukee, United States
Llamas, F.; The University of Texas Rio Grande Valley, Brownsville, United States
Llorens-Monteagudo, M.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Lo, R.K.L.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Lockwood, A.; University of Washington, Seattle, United States
Loh, M.; California State University Fullerton, Fullerton, United States
London, L.T.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Longo, A.; Dipartimento di Matematica e Fisica, Università Degli Studi Roma Tre, Roma, Italy ; INFN, Sezione di Roma Tre, Roma, Italy
Lopez, D.; Physik-Institut, University of Zurich, Zurich, Switzerland
Lopez Portilla, M.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Lorenzini, M.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Loriette, V.; ESPCI, CNRS, Paris, France
Lormand, M.; LIGO Livingston Observatory, Livingston, United States
Losurdo, G.; INFN, Sezione di Pisa, Pisa, Italy
Lott, T.P.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Lough, J.D.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Lousto, C.O.; Rochester Institute of Technology, Rochester, United States
Lovelace, G.; California State University Fullerton, Fullerton, United States
Lucaccioni, J.F.; Kenyon College, Gambier, United States
Lück, H.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Lumaca, D.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Lundgren, A.P.; University of Portsmouth, Portsmouth, United Kingdom
Luo, L.-W.; Institute of Physics, Academia Sinica, Taipei, Taiwan
Lynam, J.E.; Christopher Newport University, Newport News, United States
Macas, R.; University of Portsmouth, Portsmouth, United Kingdom
Macinnis, M.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Macleod, D.M.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Macmillan, I.A.O.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Macquet, A.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Hernandez, I. Magaña; University of Wisconsin-Milwaukee, Milwaukee, United States
Magazzù, C.; INFN, Sezione di Pisa, Pisa, Italy
Magee, R.M.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Maggiore, R.; University of Birmingham, Birmingham, United Kingdom
Magnozzi, M.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
Mahesh, S.; West Virginia University, Morgantown, United States
Majorana, E.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Makarem, C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Maksimovic, I.; ESPCI, CNRS, Paris, France
Maliakal, S.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Malik, A.; RRCAT, Indore, India
Man, N.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Mandic, V.; University of Minnesota, Minneapolis, United States
Mangano, V.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Mango, J.L.; Concordia University Wisconsin, Mequon, United States
Mansell, G.L.; LIGO, Hanford Observatory, Richland, United States ; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Manske, M.; University of Wisconsin-Milwaukee, Milwaukee, United States
Mantovani, M.; European Gravitational Observatory (EGO), Pisa, Italy
Mapelli, M.; Università di Padova, Dipartimento di Fisica e Astronomia, Padova, Italy ; INFN, Sezione di Padova, Padova, Italy
Marchesoni, F.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Camerino, Dipartimento di Fisica, Camerino, Italy ; School of Physics Science and Engineering, Tongji University, Shanghai, China
Marchio, M.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Marion, F.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Mark, Z.; CaRT, California Institute of Technology, Pasadena, United States
Márka, S.; Columbia University, New York, United States
Márka, Z.; Columbia University, New York, United States
Markakis, C.; University of Cambridge, Cambridge, United Kingdom
Markosyan, A.S.; Stanford University, Stanford, United States
Markowitz, A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Maros, E.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Marquina, A.; Departamento de Matemáticas, Universitat de València, València, Spain
Marsat, S.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Martelli, F.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Martin, I.W.; SUPA, University of Glasgow, Glasgow, United Kingdom
Martin, R.M.; Montclair State University, Montclair, United States
Martinez, M.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Martinez, V.A.; University of Florida, Gainesville, United States
Martinez, V.; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
Martinovic, K.; King's College London, University of London, London, United Kingdom
Martynov, D.V.; University of Birmingham, Birmingham, United Kingdom
Marx, E.J.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Masalehdan, H.; Universität Hamburg, Hamburg, Germany
Mason, K.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Massera, E.; The University of Sheffield, Sheffield, United Kingdom
Masserot, A.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Massinger, T.J.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Masso-Reid, M.; SUPA, University of Glasgow, Glasgow, United Kingdom
Mastrogiovanni, S.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Matas, A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Mateu-Lucena, M.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Matichard, F.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Matiushechkina, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Mavalvala, N.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
McCann, J.J.; OzGrav, University of Western Australia, Crawley, Australia
McCarthy, R.; LIGO, Hanford Observatory, Richland, United States
McClelland, D.E.; OzGrav, Australian National University, Canberra, Australia
McClincy, P.K.; The Pennsylvania State University, University Park, United States
McCormick, S.; LIGO Livingston Observatory, Livingston, United States
McCuller, L.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
McGhee, G.I.; SUPA, University of Glasgow, Glasgow, United Kingdom
McGuire, S.C.; Southern University and A&M College, Baton Rouge, United States
McIsaac, C.; University of Portsmouth, Portsmouth, United Kingdom
McIver, J.; University of British Columbia, Vancouver, Canada
McRae, T.; OzGrav, Australian National University, Canberra, Australia
McWilliams, S.T.; West Virginia University, Morgantown, United States
Meacher, D.; University of Wisconsin-Milwaukee, Milwaukee, United States
Mehmet, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Mehta, A.K.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Meijer, Q.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Melatos, A.; OzGrav, University of Melbourne, Parkville, Australia
Melchor, D.A.; California State University Fullerton, Fullerton, United States
Mendell, G.; LIGO, Hanford Observatory, Richland, United States
Menendez-Vazquez, A.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Menoni, C.S.; Colorado State University, Fort Collins, United States
Mercer, R.A.; University of Wisconsin-Milwaukee, Milwaukee, United States
Mereni, L.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Merfeld, K.; University of Oregon, Eugene, United States
Merilh, E.L.; LIGO Livingston Observatory, Livingston, United States
Merritt, J.D.; University of Oregon, Eugene, United States
Merzougui, M.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Meshkov, S.; University of Sannio at Benevento, Benevento, Italy ; INFN, Sezione di Napoli, Napoli, Italy
Messenger, C.; SUPA, University of Glasgow, Glasgow, United Kingdom
Messick, C.; Department of Physics, University of Texas, Austin, United States
Meyers, P.M.; OzGrav, University of Melbourne, Parkville, Australia
Meylahn, F.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Mhaske, A.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Miani, A.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Miao, H.; University of Birmingham, Birmingham, United Kingdom
Michaloliakos, I.; University of Florida, Gainesville, United States
Michel, C.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Michimura, Y.; Department of Physics, The University of Tokyo, Tokyo, Japan
Middleton, H.; OzGrav, University of Melbourne, Parkville, Australia
Milano, L.; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Miller, A.L.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Miller, A.; California State University, Los Angeles, Los Angeles, United States
Miller, B.; Nikhef, Amsterdam, Netherlands ; GRAPPA, Anton Pannekoek Institute for Astronomy, Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Millhouse, M.; OzGrav, University of Melbourne, Parkville, Australia
Mills, J.C.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Milotti, E.; INFN, Sezione di Trieste, Trieste, Italy ; Dipartimento di Fisica, Università di Trieste, Trieste, Italy
Minazzoli, O.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France ; Centre Scientifique de Monaco, Monaco
Minenkov, Y.; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Mio, N.; Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
Mir, Ll. M.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Miravet-Tenés, M.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Mishra, C.; Indian Institute of Technology Madras, Chennai, India
Mishra, T.; University of Florida, Gainesville, United States
Mistry, T.; The University of Sheffield, Sheffield, United Kingdom
Mitra, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Mitrofanov, V.P.; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
Mitselmakher, G.; University of Florida, Gainesville, United States
Mittleman, R.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Miyakawa, O.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Miyamoto, A.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Miyazaki, Y.; Department of Physics, The University of Tokyo, Tokyo, Japan
Miyo, K.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Miyoki, S.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Mo, Geoffrey; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Modafferi, L.M.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Moguel, E.; Kenyon College, Gambier, United States
Mogushi, K.; Missouri University of Science and Technology, Rolla, United States
Mohapatra, S.R.P.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Mohite, S.R.; University of Wisconsin-Milwaukee, Milwaukee, United States
Molina, I.; California State University Fullerton, Fullerton, United States
Molina-Ruiz, M.; University of California, Berkeley, United States
Mondin, M.; California State University, Los Angeles, Los Angeles, United States
Montani, M.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Moore, C.J.; University of Birmingham, Birmingham, United Kingdom
Moraru, D.; LIGO, Hanford Observatory, Richland, United States
Morawski, F.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
More, A.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Moreno, C.; Embry-Riddle Aeronautical University, Prescott, United States
Moreno, G.; LIGO, Hanford Observatory, Richland, United States
Mori, Y.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Morisaki, S.; University of Wisconsin-Milwaukee, Milwaukee, United States
Moriwaki, Y.; Faculty of Science, University of Toyama, Toyama City, Japan
Morrás, G.; Instituto de Fisica Teorica UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
Mours, B.; Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
Mow-Lowry, C.M.; University of Birmingham, Birmingham, United Kingdom ; Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Mozzon, S.; University of Portsmouth, Portsmouth, United Kingdom
Muciaccia, F.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Mukherjee, Arunava; Saha Institute of Nuclear Physics, Bidhannagar, India
Mukherjee, D.; The Pennsylvania State University, University Park, United States
Mukherjee, Soma; The University of Texas Rio Grande Valley, Brownsville, United States
Mukherjee, Subroto; Institute for Plasma Research, Gandhinagar, India
Mukherjee, Suvodip; GRAPPA, Anton Pannekoek Institute for Astronomy, Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Mukund, N.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Mullavey, A.; LIGO Livingston Observatory, Livingston, United States
Munch, J.; OzGrav, University of Adelaide, Adelaide, Australia
Muñiz, E.A.; Syracuse University, Syracuse, United States
Murray, P.G.; SUPA, University of Glasgow, Glasgow, United Kingdom
Musenich, R.; INFN, Sezione di Genova, Genova, Italy ; Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
Muusse, S.; OzGrav, University of Adelaide, Adelaide, Australia
Nadji, S.L.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Nagano, K.; Institute of Space and Astronautical Science (JAXA), Sagamihara City, Japan
Nagano, S.; The Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology (NICT), Tokyo, Japan
Nagar, A.; INFN, Sezione di Torino, Torino, Italy ; Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
Nakamura, K.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Nakano, H.; Faculty of Law, Ryukoku University, Kyoto City, Japan
Nakano, M.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Nakashima, R.; Graduate School of Science, Tokyo Institute of Technology, Tokyo, Japan
Nakayama, Y.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Napolano, V.; European Gravitational Observatory (EGO), Pisa, Italy
Nardecchia, I.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Narikawa, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Naticchioni, L.; INFN, Sezione di Roma, Roma, Italy
Nayak, B.; California State University, Los Angeles, Los Angeles, United States
Nayak, R.K.; Indian Institute of Science Education and Research, Kolkata, India
Negishi, R.; Graduate School of Science and Technology, Niigata University, Niigata City, Japan
Neil, B.F.; OzGrav, University of Western Australia, Crawley, Australia
Neilson, J.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Nelemans, G.; Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, Netherlands
Nelson, T.J.N.; LIGO Livingston Observatory, Livingston, United States
Nery, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Neubauer, P.; Kenyon College, Gambier, United States
Neunzert, A.; University of Washington Bothell, Bothell, United States
Ng, K.Y.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Ng, S.W.S.; OzGrav, University of Adelaide, Adelaide, Australia
Nguyen, C.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Nguyen, P.; University of Oregon, Eugene, United States
Nguyen, T.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Quynh, L. Nguyen; Department of Physics, University of Notre Dame, Notre Dame, United States
Ni, W.-T.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan ; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China ; National Astronomical Observatories, Chinese Academic of Sciences, Beijing, China
Nichols, S.A.; Louisiana State University, Baton Rouge, United States
Nishizawa, A.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Nissanke, S.; Nikhef, Amsterdam, Netherlands ; GRAPPA, Anton Pannekoek Institute for Astronomy, Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Nitoglia, E.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Nocera, F.; European Gravitational Observatory (EGO), Pisa, Italy
Norman, M.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
North, C.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Nozaki, S.; Faculty of Science, University of Toyama, Toyama City, Japan
Siles, J. F. Nuño; Instituto de Fisica Teorica UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
Nuttall, L.K.; University of Portsmouth, Portsmouth, United Kingdom
Oberling, J.; LIGO, Hanford Observatory, Richland, United States
O'Brien, B.D.; University of Florida, Gainesville, United States
Obuchi, Y.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
O'Dell, J.; Rutherford Appleton Laboratory, Didcot, United Kingdom
Oelker, E.; SUPA, University of Glasgow, Glasgow, United Kingdom
Ogaki, W.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Oganesyan, G.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Oh, J.J.; National Institute for Mathematical Sciences, Daejeon, South Korea
Oh, K.; Astronomy & Space Science, Chungnam National University, Daejeon, South Korea
Oh, S.H.; National Institute for Mathematical Sciences, Daejeon, South Korea
Ohashi, M.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Ohishi, N.; Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Hida City, Japan
Ohkawa, M.; Faculty of Engineering, Niigata University, Niigata City, Japan
Ohme, F.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Ohta, H.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Okada, M.A.; Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
Okutani, Y.; Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara City, Japan
Okutomi, K.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Olivetto, C.; European Gravitational Observatory (EGO), Pisa, Italy
Oohara, K.; Graduate School of Science and Technology, Niigata University, Niigata City, Japan
Ooi, C.; Department of Physics, The University of Tokyo, Tokyo, Japan
Oram, R.; LIGO Livingston Observatory, Livingston, United States
O'Reilly, B.; LIGO Livingston Observatory, Livingston, United States
Ormiston, R.G.; University of Minnesota, Minneapolis, United States
Ormsby, N.D.; Christopher Newport University, Newport News, United States
Ortega, L.F.; University of Florida, Gainesville, United States
O'Shaughnessy, R.; Rochester Institute of Technology, Rochester, United States
O'Shea, E.; Cornell University, Ithaca, United States
Oshino, S.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Ossokine, S.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Osthelder, C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Otabe, S.; Graduate School of Science, Tokyo Institute of Technology, Tokyo, Japan
Ottaway, D.J.; OzGrav, University of Adelaide, Adelaide, Australia
Overmier, H.; LIGO Livingston Observatory, Livingston, United States
Pace, A.E.; The Pennsylvania State University, University Park, United States
Pagano, G.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Page, M.A.; OzGrav, University of Western Australia, Crawley, Australia
Pagliaroli, G.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Pai, A.; Indian Institute of Technology Bombay, Mumbai, India
Pai, S.A.; RRCAT, Indore, India
Palamos, J.R.; University of Oregon, Eugene, United States
Palashov, O.; Institute of Applied Physics, Nizhny Novgorod, Russian Federation
Palomba, C.; INFN, Sezione di Roma, Roma, Italy
Pan, H.; National Tsing Hua University, Hsinchu City, Taiwan
Pan, K.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan ; Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan
Panda, P.K.; Directorate of Construction, Services & Estate Management, Mumbai, India
Pang, H.; Department of Physics, Center for High Energy and High Field Physics, National Central University, Taoyuan City, Taiwan
Pang, P.T.H.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Pankow, C.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Pannarale, F.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Pant, B.C.; RRCAT, Indore, India
Panther, F.H.; OzGrav, University of Western Australia, Crawley, Australia
Paoletti, F.; INFN, Sezione di Pisa, Pisa, Italy
Paoli, A.; European Gravitational Observatory (EGO), Pisa, Italy
Paolone, A.; INFN, Sezione di Roma, Roma, Italy ; Consiglio Nazionale Delle Ricerche-Istituto Dei Sistemi Complessi, Roma, Italy
Parisi, A.; Department of Physics, Tamkang University, New Taipei City, Taiwan
Park, H.; University of Wisconsin-Milwaukee, Milwaukee, United States
Park, J.; Korea Astronomy and Space Science Institute (KASI), Daejeon, South Korea
Parker, W.; LIGO Livingston Observatory, Livingston, United States ; Southern University and A&M College, Baton Rouge, United States
Pascucci, D.; Nikhef, Amsterdam, Netherlands
Pasqualetti, A.; European Gravitational Observatory (EGO), Pisa, Italy
Passaquieti, R.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Passuello, D.; INFN, Sezione di Pisa, Pisa, Italy
Patel, M.; Christopher Newport University, Newport News, United States
Pathak, M.; OzGrav, University of Adelaide, Adelaide, Australia
Patricelli, B.; INFN, Sezione di Pisa, Pisa, Italy ; European Gravitational Observatory (EGO), Pisa, Italy
Patron, A.S.; Louisiana State University, Baton Rouge, United States
Paul, S.; University of Oregon, Eugene, United States
Payne, E.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Pedraza, M.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Pegoraro, M.; INFN, Sezione di Padova, Padova, Italy
Pele, A.; LIGO Livingston Observatory, Livingston, United States
Arellano, F. E. Peña; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Penn, S.; Hobart and William Smith Colleges, Geneva, United States
Perego, A.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Pereira, A.; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
Pereira, T.; International Institute of Physics, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
Perez, C.J.; LIGO, Hanford Observatory, Richland, United States
Périgois, C.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Perkins, C.C.; University of Florida, Gainesville, United States
Perreca, A.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Perriès, S.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Petermann, J.; Universität Hamburg, Hamburg, Germany
Petterson, D.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Pfeiffer, H.P.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Pham, K.A.; University of Minnesota, Minneapolis, United States
Phukon, K.S.; Nikhef, Amsterdam, Netherlands ; Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Piccinni, O.J.; INFN, Sezione di Roma, Roma, Italy
Pichot, M.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Piendibene, M.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Piergiovanni, F.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Pierini, L.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Pierro, V.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Pillant, G.; European Gravitational Observatory (EGO), Pisa, Italy
Pillas, M.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Pilo, F.; INFN, Sezione di Pisa, Pisa, Italy
Pinard, L.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Pinto, I.M.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy
Pinto, M.; European Gravitational Observatory (EGO), Pisa, Italy
Piotrzkowski, B.; University of Wisconsin-Milwaukee, Milwaukee, United States
Piotrzkowski, K.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Pirello, M.; LIGO, Hanford Observatory, Richland, United States
Pitkin, M.D.; Lancaster University, Lancaster, United Kingdom
Placidi, E.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Planas, L.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Plastino, W.; Dipartimento di Matematica e Fisica, Università Degli Studi Roma Tre, Roma, Italy ; INFN, Sezione di Roma Tre, Roma, Italy
Pluchar, C.; University of Arizona, Tucson, United States
Poggiani, R.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Polini, E.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Pong, D.Y.T.; The Chinese University of Hong Kong, Shatin, Hong Kong
Ponrathnam, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Popolizio, P.; European Gravitational Observatory (EGO), Pisa, Italy
Porter, E.K.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Poulton, R.; European Gravitational Observatory (EGO), Pisa, Italy
Powell, J.; OzGrav, Swinburne University of Technology, Hawthorn, Australia
Pracchia, M.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Pradier, T.; Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
Prajapati, A.K.; Institute for Plasma Research, Gandhinagar, India
Prasai, K.; Stanford University, Stanford, United States
Prasanna, R.; Directorate of Construction, Services & Estate Management, Mumbai, India
Pratten, G.; University of Birmingham, Birmingham, United Kingdom
Principe, M.; Dipartimento di Ingegneria, Università Del Sannio, Benevento, Italy ; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy
Prodi, G.A.; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy ; Università di Trento, Dipartimento di Matematica, Trento, Italy
Prokhorov, L.; University of Birmingham, Birmingham, United Kingdom
Prosposito, P.; Università di Roma Tor Vergata, Roma, Italy ; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Prudenzi, L.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Puecher, A.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Punturo, M.; INFN, Sezione di Perugia, Perugia, Italy
Puosi, F.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Puppo, P.; INFN, Sezione di Roma, Roma, Italy
Pürrer, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Qi, H.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Quetschke, V.; The University of Texas Rio Grande Valley, Brownsville, United States
Quitzow-James, R.; Missouri University of Science and Technology, Rolla, United States
Qutob, N.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Raab, F.J.; LIGO, Hanford Observatory, Richland, United States
Raaijmakers, G.; Nikhef, Amsterdam, Netherlands ; GRAPPA, Anton Pannekoek Institute for Astronomy, Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Radkins, H.; LIGO, Hanford Observatory, Richland, United States
Radulesco, N.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Raffai, P.; MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest, Hungary
Rail, S.X.; Université de Montréal/Polytechnique, Montreal, Canada
Raja, S.; RRCAT, Indore, India
Rajan, C.; RRCAT, Indore, India
Ramirez, K.E.; LIGO Livingston Observatory, Livingston, United States
Ramirez, T.D.; California State University Fullerton, Fullerton, United States
Ramos-Buades, A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Rana, J.; The Pennsylvania State University, University Park, United States
Rapagnani, P.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Rapol, U.D.; Indian Institute of Science Education and Research, Pune, India
Ray, A.; University of Wisconsin-Milwaukee, Milwaukee, United States
Raymond, V.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Raza, N.; University of British Columbia, Vancouver, Canada
Razzano, M.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Read, J.; California State University Fullerton, Fullerton, United States
Rees, L.A.; American University, Washington, United States
Regimbau, T.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Rei, L.; INFN, Sezione di Genova, Genova, Italy
Reid, S.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Reid, S.W.; Christopher Newport University, Newport News, United States
Reitze, D.H.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; University of Florida, Gainesville, United States
Relton, P.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Renzini, A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Rettegno, P.; INFN, Sezione di Torino, Torino, Italy ; Dipartimento di Fisica, Università Degli Studi di Torino, Torino, Italy
Reza, A.; Nikhef, Amsterdam, Netherlands
Rezac, M.; California State University Fullerton, Fullerton, United States
Ricci, F.; INFN, Sezione di Roma, Roma, Italy ; Università di Roma la Sapienza, Roma, Italy
Richards, D.; Rutherford Appleton Laboratory, Didcot, United Kingdom
Richardson, J.W.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Richardson, L.; Texas A&M University, College Station, United States
Riemenschneider, G.; INFN, Sezione di Torino, Torino, Italy ; Dipartimento di Fisica, Università Degli Studi di Torino, Torino, Italy
Riles, K.; University of Michigan, Ann Arbor, United States
Rinaldi, S.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Rink, K.; University of British Columbia, Vancouver, Canada
Rizzo, M.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Robertson, N.A.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; SUPA, University of Glasgow, Glasgow, United Kingdom
Robie, R.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Robinet, F.; Université Paris-Saclay, CNRS, IN2P3, IJCLab, Orsay, France
Rocchi, A.; INFN, Sezione di Roma Tor Vergata, Roma, Italy
Rodriguez, S.; California State University Fullerton, Fullerton, United States
Rolland, L.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Rollins, J.G.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Romanelli, M.; Univ Rennes, CNRS, Institut FOTON-UMR6082, Rennes, France
Romano, R.; Dipartimento di Farmacia, Università di Salerno, Salerno, Italy ; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy
Romel, C.L.; LIGO, Hanford Observatory, Richland, United States
Romero-Rodríguez, A.; Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
Romero-Shaw, I.M.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Romie, J.H.; LIGO Livingston Observatory, Livingston, United States
Ronchini, S.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Rosa, L.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Rose, C.A.; University of Wisconsin-Milwaukee, Milwaukee, United States
Ross, M.P.; University of Washington, Seattle, United States
Rowan, S.; SUPA, University of Glasgow, Glasgow, United Kingdom
Rowlinson, S.J.; University of Birmingham, Birmingham, United Kingdom
Roy, S.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Roy, Santosh; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Roy, Soumen; Indian Institute of Technology, Gandhinagar, India
Rozza, D.; Università Degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali Del Sud, Catania, Italy
Ruggi, P.; European Gravitational Observatory (EGO), Pisa, Italy
Ruiz-Rocha, K.; Vanderbilt University, Nashville, United States
Ryan, K.; LIGO, Hanford Observatory, Richland, United States
Sachdev, S.; The Pennsylvania State University, University Park, United States
Sadecki, T.; LIGO, Hanford Observatory, Richland, United States
Sadiq, J.; IGFAE, Campus Sur, Universidade de Santiago de Compostela, Spain
Sago, N.; Department of Physics, Kyoto University, Kyoto City, Japan
Saito, S.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Saito, Y.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Sakai, K.; Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, Nagaoka City, Japan
Sakai, Y.; Graduate School of Science and Technology, Niigata University, Niigata City, Japan
Sakellariadou, M.; King's College London, University of London, London, United Kingdom
Sakuno, Y.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Salafia, O.S.; Università Degli Studi di Milano-Bicocca, Milano, Italy ; INFN, Sezione di Milano-Bicocca, Milano, Italy ; INAF, Osservatorio Astronomico di Brera Sede di Merate, Lecco, Italy
Salconi, L.; European Gravitational Observatory (EGO), Pisa, Italy
Saleem, M.; University of Minnesota, Minneapolis, United States
Salemi, F.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Samajdar, A.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Sanchez, E.J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Sanchez, J.H.; California State University Fullerton, Fullerton, United States
Sanchez, L.E.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Sanchis-Gual, N.; Departamento de Matemática, Universidade de Aveiro, Centre for Research and Development in Mathematics and Applications, Aveiro, Portugal
Sanders, J.R.; Marquette University, Milwaukee, United States
Sanuy, A.; Institut de Ciències Del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
Saravanan, T.R.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Sarin, N.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Sassolas, B.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Satari, H.; OzGrav, University of Western Australia, Crawley, Australia
Sathyaprakash, B.S.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom ; The Pennsylvania State University, University Park, United States
Sato, S.; Graduate School of Science and Engineering, Hosei University, Koganei City, Japan
Sato, T.; Faculty of Engineering, Niigata University, Niigata City, Japan
Sauter, O.; University of Florida, Gainesville, United States
Savage, R.L.; LIGO, Hanford Observatory, Richland, United States
Sawada, T.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Sawant, D.; Indian Institute of Technology Bombay, Mumbai, India
Sawant, H.L.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Sayah, S.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Schaetzl, D.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Scheel, M.; CaRT, California Institute of Technology, Pasadena, United States
Scheuer, J.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Schiworski, M.; OzGrav, University of Adelaide, Adelaide, Australia
Schmidt, P.; University of Birmingham, Birmingham, United Kingdom
Schmidt, S.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Schnabel, R.; Universität Hamburg, Hamburg, Germany
Schneewind, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Schofield, R.M.S.; University of Oregon, Eugene, United States
Schönbeck, A.; Universität Hamburg, Hamburg, Germany
Schulte, B.W.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Schutz, B.F.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany ; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Schwartz, E.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Scott, J.; SUPA, University of Glasgow, Glasgow, United Kingdom
Scott, S.M.; OzGrav, Australian National University, Canberra, Australia
Seglar-Arroyo, M.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Sekiguchi, T.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Sekiguchi, Y.; Faculty of Science, Toho University, Funabashi City, Japan
Sellers, D.; LIGO Livingston Observatory, Livingston, United States
Sengupta, A.S.; Indian Institute of Technology, Gandhinagar, India
Sentenac, D.; European Gravitational Observatory (EGO), Pisa, Italy
Seo, E.G.; The Chinese University of Hong Kong, Shatin, Hong Kong
Sequino, V.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Università di Napoli "federico II", Complesso Universitario di Monte S. Angelo, Napoli, Italy
Sergeev, A.; Institute of Applied Physics, Nizhny Novgorod, Russian Federation
Setyawati, Y.; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Shaffer, T.; LIGO, Hanford Observatory, Richland, United States
Shahriar, M.S.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Shams, B.; The University of Utah, Salt Lake City, United States
Shao, L.; Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Sharma, A.; Gran Sasso Science Institute (GSSI), L'Aquila, Italy ; INFN, Laboratori Nazionali Del Gran Sasso, Assergi, Italy
Sharma, P.; RRCAT, Indore, India
Shawhan, P.; University of Maryland, College Park, United States
Shcheblanov, N.S.; NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
Shibagaki, S.; Department of Applied Physics, Fukuoka University, Fukuoka City, Japan
Shikauchi, M.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Shimizu, R.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Shimoda, T.; Department of Physics, The University of Tokyo, Tokyo, Japan
Shimode, K.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Shinkai, H.; Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata City, Japan
Shishido, T.; The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
Shoda, A.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Shoemaker, D.H.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Shoemaker, D.M.; Department of Physics, University of Texas, Austin, United States
Shyamsundar, S.; RRCAT, Indore, India
Sieniawska, M.; Astronomical Observatory Warsaw University, Warsaw, Poland
Sigg, D.; LIGO, Hanford Observatory, Richland, United States
Singer, L.P.; NASA Goddard Space Flight Center, Greenbelt, United States
Singh, D.; The Pennsylvania State University, University Park, United States
Sintes, A.M.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Sipala, V.; Università Degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali Del Sud, Catania, Italy
Skliris, V.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Slagmolen, B.J.J.; OzGrav, Australian National University, Canberra, Australia
Slaven-Blair, T.J.; OzGrav, University of Western Australia, Crawley, Australia
Smetana, J.; University of Birmingham, Birmingham, United Kingdom
Smith, J.R.; California State University Fullerton, Fullerton, United States
Smith, R.J.E.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Soldateschi, J.; INFN, Sezione di Firenze, Firenze, Italy ; Università di Firenze, Sesto Fiorentino, Italy ; INAF, Osservatorio Astrofisico di Arcetri, Firenze, Italy
Somala, S.N.; Indian Institute of Technology Hyderabad, Khandi, India
Somiya, K.; Graduate School of Science, Tokyo Institute of Technology, Tokyo, Japan
Son, E.J.; National Institute for Mathematical Sciences, Daejeon, South Korea
Soni, K.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Soni, S.; Louisiana State University, Baton Rouge, United States
Sordini, V.; Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon, IN2P3, UMR 5822, Villeurbanne, France
Sorrentino, F.; INFN, Sezione di Genova, Genova, Italy
Sorrentino, N.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Sotani, H.; ITHEMS, Interdisciplinary Theoretical and Mathematical Sciences Program, The Institute of Physical and Chemical Research, RIKEN, Wako, Japan
Soulard, R.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Souradeep, T.; Inter-University Centre for Astronomy and Astrophysics, Pune, India ; Indian Institute of Science Education and Research, Pune, India
Sowell, E.; Texas Tech University, Lubbock, United States
Stevenson, S.P.; OzGrav, Swinburne University of Technology, Hawthorn, Australia
Stops, D.J.; University of Birmingham, Birmingham, United Kingdom
Stover, M.; Kenyon College, Gambier, United States
Strain, K.A.; SUPA, University of Glasgow, Glasgow, United Kingdom
Strang, L.C.; OzGrav, University of Melbourne, Parkville, Australia
Stratta, G.; INFN, Sezione di Firenze, Firenze, Italy ; INAF, Osservatorio di Astrofisica e Scienza Dello Spazio, Bologna, Italy
Strunk, A.; LIGO, Hanford Observatory, Richland, United States
Sturani, R.; International Institute of Physics, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
Stuver, A.L.; Villanova University, Villanova, United States
Sudhagar, S.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Sudhir, V.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Sugimoto, R.; Institute of Space and Astronautical Science (JAXA), Sagamihara City, Japan ; Department of Space and Astronautical Science, The Graduate University for Advanced Studies, SOKENDAI, Sagamihara City, Japan
Suh, H.G.; University of Wisconsin-Milwaukee, Milwaukee, United States
Sullivan, A.G.; Columbia University, New York, United States
Sullivan, J.M.; School of Physics, Georgia Institute of Technology, Atlanta, United States
Summerscales, T.Z.; Andrews University, Berrien Springs, United States
Sun, H.; OzGrav, University of Western Australia, Crawley, Australia
Sun, L.; OzGrav, Australian National University, Canberra, Australia
Sunil, S.; Institute for Plasma Research, Gandhinagar, India
Sur, A.; Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland
Suresh, J.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan ; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Sutton, P.J.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Suzuki, Takamasa; Faculty of Engineering, Niigata University, Niigata City, Japan
Suzuki, Toshikazu; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Swinkels, B.L.; Nikhef, Amsterdam, Netherlands
Szczepańczyk, M.J.; University of Florida, Gainesville, United States
Tagoshi, H.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Tait, S.C.; SUPA, University of Glasgow, Glasgow, United Kingdom
Takahashi, H.; Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, Tokyo, Japan
Takahashi, R.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Takamori, A.; Earthquake Research Institute, The University of Tokyo, Tokyo, Japan
Takano, S.; Department of Physics, The University of Tokyo, Tokyo, Japan
Takeda, H.; Department of Physics, The University of Tokyo, Tokyo, Japan
Takeda, M.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Talbot, C.J.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Talbot, C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Tanaka, H.; Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Japan
Tanaka, Kazuyuki; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Tanaka, Kenta; Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Japan
Tanaka, Taiki; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Tanaka, Takahiro; Department of Physics, Kyoto University, Kyoto City, Japan
Tanasijczuk, A.J.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Tanioka, S.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan ; The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
Tanner, D.B.; University of Florida, Gainesville, United States
Tao, D.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Tao, L.; University of Florida, Gainesville, United States
Martín, E. N. Tapia San; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan ; Nikhef, Amsterdam, Netherlands
Taranto, C.; Università di Roma Tor Vergata, Roma, Italy
Tasson, J.D.; Carleton College, Northfield, United States
Telada, S.; National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba City, Japan
Tenorio, R.; Universitat de les Illes Balears, IAC3 IEEC, Palma de Mallorca, Spain
Terhune, J.E.; Villanova University, Villanova, United States
Terkowski, L.; Universität Hamburg, Hamburg, Germany
Thirugnanasambandam, M.P.; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Thomas, L.; University of Birmingham, Birmingham, United Kingdom
Thomas, M.; LIGO Livingston Observatory, Livingston, United States
Thomas, P.; LIGO, Hanford Observatory, Richland, United States
Thompson, J.E.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Thondapu, S.R.; RRCAT, Indore, India
Thorne, K.A.; LIGO Livingston Observatory, Livingston, United States
Thrane, E.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Tiwari, Shubhanshu; Physik-Institut, University of Zurich, Zurich, Switzerland
Tiwari, Srishti; Inter-University Centre for Astronomy and Astrophysics, Pune, India
Tiwari, V.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Toivonen, A.M.; University of Minnesota, Minneapolis, United States
Toland, K.; SUPA, University of Glasgow, Glasgow, United Kingdom
Tolley, A.E.; University of Portsmouth, Portsmouth, United Kingdom
Tomaru, T.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Tomigami, Y.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Tomura, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Tonelli, M.; INFN, Sezione di Pisa, Pisa, Italy ; Università di Pisa, Pisa, Italy
Torres-Forné, A.; Departamento de Astronomía y Astrofísica, Universitat de València, València, Spain
Torrie, C.I.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
E Melo, I. Tosta; Università Degli Studi di Sassari, Sassari, Italy ; INFN, Laboratori Nazionali Del Sud, Catania, Italy
Töyrä, D.; OzGrav, Australian National University, Canberra, Australia
Trapananti, A.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Camerino, Dipartimento di Fisica, Camerino, Italy
Travasso, F.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Camerino, Dipartimento di Fisica, Camerino, Italy
Traylor, G.; LIGO Livingston Observatory, Livingston, United States
Trevor, M.; University of Maryland, College Park, United States
Tringali, M.C.; European Gravitational Observatory (EGO), Pisa, Italy
Tripathee, A.; University of Michigan, Ann Arbor, United States
Troiano, L.; INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Dipartimento di Scienze Aziendali-Management and Innovation Systems, DISA-MIS, Università di Salerno, Salerno, Italy
Trovato, A.; Université de Paris, CNRS, Astroparticule et Cosmologie, Paris, France
Trozzo, L.; INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli, Italy ; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Trudeau, R.J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Tsai, D.S.; National Tsing Hua University, Hsinchu City, Taiwan
Tsai, D.; National Tsing Hua University, Hsinchu City, Taiwan
Tsang, K.W.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands ; Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, Netherlands
Tsang, T.; Faculty of Science, Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
Tsao, J.-S.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Tse, M.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Tso, R.; CaRT, California Institute of Technology, Pasadena, United States
Tsubono, K.; Department of Physics, The University of Tokyo, Tokyo, Japan
Tsuchida, S.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Tsukada, L.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Tsuna, D.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Tsutsui, T.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Tsuzuki, T.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Turconi, M.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Tuyenbayev, D.; Department of Physics, Graduate School of Science, Osaka City University, Osaka City, Japan
Ubhi, A.S.; University of Birmingham, Birmingham, United Kingdom
Uchikata, N.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Uchiyama, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Udall, R.P.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Ueda, A.; Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Japan
Uehara, T.; Department of Communications Engineering, National Defense Academy of Japan, Yokosuka City, Japan ; Department of Physics, University of Florida, Gainesville, United States
Ueno, K.; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Ueshima, G.; Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka City, Japan
Unnikrishnan, C.S.; Tata Institute of Fundamental Research, Mumbai, India
Uraguchi, F.; Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Urban, A.L.; Louisiana State University, Baton Rouge, United States
Ushiba, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Vahlbruch, H.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Vajente, G.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Vajpeyi, A.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Valdes, G.; Texas A&M University, College Station, United States
Valentini, M.; Università di Trento, Dipartimento di Fisica, Trento, Italy ; INFN, Trento Institute for Fundamental Physics and Applications, Trento, Italy
Valsan, V.; University of Wisconsin-Milwaukee, Milwaukee, United States
Van Bakel, N.; Nikhef, Amsterdam, Netherlands
Van Beuzekom, M.; Nikhef, Amsterdam, Netherlands
Van Den Brand, J.F.J.; Nikhef, Amsterdam, Netherlands ; Maastricht University, Maastricht, Netherlands ; Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Van Den Broeck, C.; Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Vander-Hyde, D.C.; Syracuse University, Syracuse, United States
Van Der Schaaf, L.; Nikhef, Amsterdam, Netherlands
Van Heijningen, J.V.; Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Vanosky, J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Van Putten, M.H.P.M.; Department of Physics and Astronomy, Sejong University, Seoul, South Korea
Van Remortel, N.; Universiteit Antwerpen, Antwerpen, Belgium
Vardaro, M.; Nikhef, Amsterdam, Netherlands ; Institute for High-Energy Physics, University of Amsterdam, Amsterdam, Netherlands
Vargas, A.F.; OzGrav, University of Melbourne, Parkville, Australia
Varma, V.; Cornell University, Ithaca, United States
Vasúth, M.; Wigner RCP, RMKI, Budapest, Hungary
Vecchio, A.; University of Birmingham, Birmingham, United Kingdom
Vedovato, G.; INFN, Sezione di Padova, Padova, Italy
Veitch, J.; SUPA, University of Glasgow, Glasgow, United Kingdom
Veitch, P.J.; OzGrav, University of Adelaide, Adelaide, Australia
Venneberg, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Venugopalan, G.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Verkindt, D.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Verma, P.; National Center for Nuclear Research, Świerk, Poland
Verma, Y.; RRCAT, Indore, India
Veske, D.; Columbia University, New York, United States
Vetrano, F.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy
Viceré, A.; Università Degli Studi di Urbino Carlo Bo, Urbino, Italy ; INFN, Sezione di Firenze, Firenze, Italy
Vidyant, S.; Syracuse University, Syracuse, United States
Viets, A.D.; Concordia University Wisconsin, Mequon, United States
Vijaykumar, A.; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
Villa-Ortega, V.; IGFAE, Campus Sur, Universidade de Santiago de Compostela, Spain
Vinet, J.-Y.; Artemis, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Nice, France
Virtuoso, A.; INFN, Sezione di Trieste, Trieste, Italy ; Dipartimento di Fisica, Università di Trieste, Trieste, Italy
Vitale, S.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Vo, T.; Syracuse University, Syracuse, United States
Vocca, H.; INFN, Sezione di Perugia, Perugia, Italy ; Università di Perugia, Perugia, Italy
Von Reis, E.R.G.; LIGO, Hanford Observatory, Richland, United States
Von Wrangel, J.S.A.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Vorvick, C.; LIGO, Hanford Observatory, Richland, United States
Vyatchanin, S.P.; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
Wade, L.E.; Kenyon College, Gambier, United States
Wade, M.; Kenyon College, Gambier, United States
Wagner, K.J.; Rochester Institute of Technology, Rochester, United States
Walet, R.C.; Nikhef, Amsterdam, Netherlands
Walker, M.; Christopher Newport University, Newport News, United States
Wallace, G.S.; SUPA, University of Strathclyde, Glasgow, United Kingdom
Wallace, L.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Walsh, S.; University of Wisconsin-Milwaukee, Milwaukee, United States
Wang, J.; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China
Wang, J.Z.; University of Michigan, Ann Arbor, United States
Wang, W.H.; The University of Texas Rio Grande Valley, Brownsville, United States
Ward, R.L.; OzGrav, Australian National University, Canberra, Australia
Warner, J.; LIGO, Hanford Observatory, Richland, United States
Was, M.; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Washimi, T.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Washington, N.Y.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Watchi, J.; Université Libre de Bruxelles, Brussels, Belgium
Weaver, B.; LIGO, Hanford Observatory, Richland, United States
Webster, S.A.; SUPA, University of Glasgow, Glasgow, United Kingdom
Weinert, M.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Weinstein, A.J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Weiss, R.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Weller, C.M.; University of Washington, Seattle, United States
Weller, R.A.; Vanderbilt University, Nashville, United States
Wellmann, F.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wen, L.; OzGrav, University of Western Australia, Crawley, Australia
Weßels, P.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wette, K.; OzGrav, Australian National University, Canberra, Australia
Whelan, J.T.; Rochester Institute of Technology, Rochester, United States
White, D.D.; California State University Fullerton, Fullerton, United States
Whiting, B.F.; University of Florida, Gainesville, United States
Whittle, C.; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Wilken, D.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Williams, D.; SUPA, University of Glasgow, Glasgow, United Kingdom
Williams, M.J.; SUPA, University of Glasgow, Glasgow, United Kingdom
Williams, N.; University of Birmingham, Birmingham, United Kingdom
Williamson, A.R.; University of Portsmouth, Portsmouth, United Kingdom
Willis, J.L.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Willke, B.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wilson, D.J.; University of Arizona, Tucson, United States
Winkler, W.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wipf, C.C.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Wlodarczyk, T.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
Woan, G.; SUPA, University of Glasgow, Glasgow, United Kingdom
Woehler, J.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wofford, J.K.; Rochester Institute of Technology, Rochester, United States
Wong, I.C.F.; The Chinese University of Hong Kong, Shatin, Hong Kong
Wu, C.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Wu, D.S.; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Hannover, Germany ; Leibniz Universität Hannover, Hannover, Germany
Wu, H.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Wu, S.; Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Wysocki, D.M.; University of Wisconsin-Milwaukee, Milwaukee, United States
Xiao, L.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Xu, W.-R.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Yamada, T.; Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Japan
Yamamoto, H.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Yamamoto, Kazuhiro; Faculty of Science, University of Toyama, Toyama City, Japan
Yamamoto, Kohei; Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Japan
Yamamoto, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Yamashita, K.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Yamazaki, R.; Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara City, Japan
Yang, F.W.; The University of Utah, Salt Lake City, United States
Yang, L.; Colorado State University, Fort Collins, United States
Yang, Y.; Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
Yang, Yang; University of Florida, Gainesville, United States
Yang, Z.; University of Minnesota, Minneapolis, United States
Yap, M.J.; OzGrav, Australian National University, Canberra, Australia
Yeeles, D.W.; Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom
Yelikar, A.B.; Rochester Institute of Technology, Rochester, United States
Ying, M.; National Tsing Hua University, Hsinchu City, Taiwan
Yokogawa, K.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Yokoyama, J.; Department of Physics, The University of Tokyo, Tokyo, Japan ; Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo, Japan
Yokozawa, T.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida City, Japan
Yoo, J.; Cornell University, Ithaca, United States
Yoshioka, T.; Graduate School of Science and Engineering, University of Toyama, Toyama City, Japan
Yu, Hang; CaRT, California Institute of Technology, Pasadena, United States
Yu, Haocun; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Yuzurihara, H.; Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Japan
Zadrożny, A.; National Center for Nuclear Research, Świerk, Poland
Zanolin, M.; Embry-Riddle Aeronautical University, Prescott, United States
Zeidler, S.; Department of Physics, Rikkyo University, Tokyo, Japan
Zelenova, T.; European Gravitational Observatory (EGO), Pisa, Italy
Zendri, J.-P.; INFN, Sezione di Padova, Padova, Italy
Zevin, M.; University of Chicago, Chicago, United States
Zhan, M.; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan, China
Zhang, H.; Department of Physics, National Taiwan Normal University, Taipei, Taiwan
Zhang, J.; OzGrav, University of Western Australia, Crawley, Australia
Zhang, L.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
Zhang, T.; University of Birmingham, Birmingham, United Kingdom
Zhang, Y.; Texas A&M University, College Station, United States
Zhao, C.; OzGrav, University of Western Australia, Crawley, Australia
Zhao, G.; Université Libre de Bruxelles, Brussels, Belgium
Zhao, Y.; Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan
Zhao, Yue; The University of Utah, Salt Lake City, United States
Zheng, Y.; Missouri University of Science and Technology, Rolla, United States
Zhou, R.; University of California, Berkeley, United States
Zhou, Z.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, United States
Zhu, X.J.; OzGrav, School of Physics & Astronomy, Monash University, Clayton, Australia
Zhu, Z.-H.; Department of Astronomy, Beijing Normal University, Beijing, China
Zimmerman, A.B.; Department of Physics, University of Texas, Austin, United States
Zlochower, Y.; Rochester Institute of Technology, Rochester, United States
Zucker, M.E.; LIGO Laboratory, California Institute of Technology, Pasadena, United States ; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, United States
Zweizig, J.; LIGO Laboratory, California Institute of Technology, Pasadena, United States
(LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)
NSF - National Science Foundation STFC - Science and Technology Facilities Council ARC - Australian Research Council INFN - Istituto Nazionale di Fisica Nucleare CNRS - Centre National de la Recherche Scientifique NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek SERB - Science and Engineering Research Board AEI - Agencia Estatal de Investigación MICINN - Ministerio de Ciencia e Innovacion Generalitat Valenciana Generalitat de Catalunya NCN - Narodowe Centrum Nauki SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung RFBR - Russian Foundation for Basic Research RSF - Russian Science Foundation EC - European Commission ESF - European Social Fund ERDF - European Regional Development Fund Royal Society SFC - Scottish Funding Council SUPA - Scottish Universities Physics Alliance OTKA - Hungarian Scientific Research Fund F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen NRF - National Research Foundation of Korea NSERC - Natural Sciences and Engineering Research Council CFI - Canada Foundation for Innovation MCTI - Ministério da Ciência, Tecnologia e Inovações ICTP-SAIFR - ICTP South American Institute for Fundamental Research NSCF - National Natural Science Foundation of China Leverhulme Trust DOE - United States. Department of Energy Kavli Foundation Australian Government BSC - Barcelona Supercomputing Center MEXT - Ministry of Education, Culture, Sports, Science and Technology JSPS - Japan Society for the Promotion of Science Academia Sinica NAO - National Astronomical Observatory of Japan High Energy Accelerator Research Organization MPG - Max Planck Society
Funding text :
Calibration of the LIGO strain data was performed with g st lal -based calibration software pipeline . Calibration of the Virgo strain data is performed with c -based software . Data-quality products and event-validation results were computed using the dmt , dqr , dqsegdb , gwdetchar , hveto , i dq , o micron and pythonvirgotools software packages and contributing software tools. Analyses in this catalog relied upon the lals uite software library . The detection of the signals and subsequent significance evaluations in this catalog were performed with the g st lal -based inspiral software pipeline , with the mbta pipeline , and with the p y cbc and the c wb packages. Estimates of the noise spectra and glitch models were obtained using b ayes w ave . Noise subtraction for one candidate was also performed with gwsubtract . Source-parameter estimation was performed with the b ilby and p arallel b ilby libraries using the d ynesty nested sampling package , and the rift library , with the lali nference libraries used for initial analyses. pesummary was used to postprocess and collate parameter-estimation results . The various stages of the parameter-estimation analysis were managed with the a simov library . Plots were prepared with matplotlib , seaborn and gwp y . n um p y and s ci p y were used in the preparation of the manuscript. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board, India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme, and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana, and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science, the Swiss National Science Foundation, the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund, the French Lyon Institute of Origins, the Belgian Fonds de la Recherche Scientifique, Actions de Recherche Concertées and Fonds Wetenschappelijk Onderzoek—Vlaanderen, Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary, the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation, the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research, the Research Grants Council of Hong Kong, the National Natural Science Foundation of China, the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology, Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. Computing was performed on the OzSTAR Australian national facility at Swinburne University of Technology, which receives funding in part from the Astronomy National Collaborative Research Infrastructure Strategy allocation provided by the Australian Government. We thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (Grant No. RES-AECT-2021-2-0021). This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research, Grant No. 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: Grants No, JP17H06358, No. JP17H06361, and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) Grant No. 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica, AS Grid Center and the Ministry of Science and Technology in Taiwan under grants including Grant No. AS-CDA-105-M06, Advanced Technology Center of NAOJ, and Mechanical Engineering Center of KEK. We thank the anonymous journal referees for helpful comments.
Commentary :
88 pages (10 pages author list, 31 pages main text, 1 page
acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16
tables. Update to match version to be published in Physical Review X. Data
products available from https://gwosc.org/GWTC-3/
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021). PRXHAE 2160-3308 10.1103/PhysRevX.11.021053
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run, arXiv:2108.01045.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), The Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3, arXiv:2111.03634.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Tests of General Relativity with GWTC-3, arXiv:2112.06861.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Constraints on the Cosmic Expansion History from GWTC-3, arXiv:2111.03604.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences, Astrophys. J. Lett. 915, L5 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac082e
C. E. Rhoades, Jr. and R. Ruffini, Maximum Mass of a Neutron Star, Phys. Rev. Lett. 32, 324 (1974). PRLTAO 0031-9007 10.1103/PhysRevLett.32.324
V. Kalogera and G. Baym, The Maximum Mass of a Neutron Star, Astrophys. J. Lett. 470, L61 (1996). AJLEEY 2041-8213 10.1086/310296
LIGO Scientific Collaboration and Virgo Collaboration, LIGO/Virgo Public Alerts User Guide, LIGO Report No. DCC-P1900171, 2019, https://emfollow.docs.ligo.org/userguide/.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Binary Black Hole Mergers in the First Advanced LIGO Observing Run, Phys. Rev. X 6, 041015 (2016); PRXHAE 2160-3308 10.1103/PhysRevX.6.041015
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. X 8, 039903(E) (2018). PRXHAE 2160-3308 10.1103/PhysRevX.8.039903
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040
B. Zackay, T. Venumadhav, L. Dai, J. Roulet, and M. Zaldarriaga, Highly Spinning and Aligned Binary Black Hole Merger in the Advanced LIGO First Observing Run, Phys. Rev. D 100, 023007 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.023007
T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M. Zaldarriaga, New Binary Black Hole Mergers in the Second Observing Run of Advanced LIGO and Advanced Virgo, Phys. Rev. D 101, 083030 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.083030
A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano, I. Harry, S. Mozzon, L. Nuttall, A. Lundgren, and M. Tápai, 2-OGC: Open Gravitational-Wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data, Astrophys. J. 891, 123 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab733f
B. Zackay, L. Dai, T. Venumadhav, J. Roulet, and M. Zaldarriaga, Detecting Gravitational Waves with Disparate Detector Responses: Two New Binary Black Hole Mergers, Phys. Rev. D 104, 063030 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.063030
A. H. Nitz, C. D. Capano, S. Kumar, Y.-F. Wang, S. Kastha, M. Schäfer, R. Dhurkunde, and M. Cabero, 3-OGC: Catalog of Gravitational Waves from Compact-Binary Mergers, Astrophys. J. 922, 76 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac1c03
S. Olsen, T. Venumadhav, J. Mushkin, J. Roulet, B. Zackay, and M. Zaldarriaga, New Binary Black Hole Mergers in the LIGO-Virgo O3a Data, Phys. Rev. D 106, 043009 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.043009
G. S. Cabourn Davies and I. W. Harry, Establishing Significance of Gravitational-Wave Signals from a Single Observatory in the p y cbc Offline Search, Classical Quantum Gravity 39, 215012 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac8862
L. S. Finn and D. F. Chernoff, Observing Binary Inspiral in Gravitational Radiation: One Interferometer, Phys. Rev. D 47, 2198 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.47.2198
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries, Phys. Rev. D 85, 122006 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122006
H.-Y. Chen, D. E. Holz, J. Miller, M. Evans, S. Vitale, and J. Creighton, Distance Measures in Gravitational-Wave Astrophysics and Cosmology, Classical Quantum Gravity 38, 055010 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abd594
B. P. Abbott (KAGRA Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration), Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativity 23, 3 (2020). 1433-8351 10.1007/s41114-020-00026-9
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Intermediate-Mass Black Hole Binaries in the Third Observing Run of Advanced LIGO and Advanced Virgo, Astron. Astrophys. 659, A84 (2022). AAEJAF 0004-6361 10.1051/0004-6361/202141452
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Subsolar-Mass Black Hole Binaries in the Second Part of Advanced LIGO's and Advanced Virgo's Third Observing Run, arXiv:2212.01477.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Gravitational-Lensing Signatures in the Full Third Observing Run of the LIGO-Virgo Network, arXiv:2304.08393.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b, Astrophys. J. 928, 186 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac532b
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run, Phys. Rev. Lett. 126, 241102 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.241102
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), All-Sky Search for Short Gravitational-Wave Bursts in the Third Advanced LIGO and Advanced Virgo Run, Phys. Rev. D 104, 122004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.122004
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), All-Sky Search for Long-Duration Gravitational-Wave Bursts in the Third Advanced LIGO and Advanced Virgo Run, Phys. Rev. D 104, 102001 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.102001
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, GWTC-3 Data Release (2021), https://www.gw-openscience.org/GWTC-3/.
C. Bond, D. Brown, A. Freise, and K. Strain, Interferometer Techniques for Gravitational-Wave Detection, Living Rev. Relativity 19, 3 (2016). 1433-8351 10.1007/s41114-016-0002-8
M. Pitkin, S. Reid, S. Rowan, and J. Hough, Gravitational Wave Detection by Interferometry (Ground and Space), Living Rev. Relativity 14, 5 (2011). 1433-8351 10.12942/lrr-2011-5
G. Vajente, E. K. Gustafson, and D. H. Reitze, Precision Interferometry for Gravitational Wave Detection: Current Status and Future Trends, Adv. At. Mol. Opt. Phys. 68, 75 (2019). AAMPE9 1049-250X 10.1016/bs.aamop.2019.04.002
D. V. Martynov, Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy, Phys. Rev. D 93, 112004 (2016); PRVDAQ 2470-0010 10.1103/PhysRevD.93.112004
D. V. Martynov Phys. Rev. D 97, 059901(E) (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.059901
A. Buikema (LIGO Instrument Science Collaboration), Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run, Phys. Rev. D 102, 062003 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.062003
C. M. Caves, Quantum Mechanical Noise in an Interferometer, Phys. Rev. D 23, 1693 (1981). PRVDAQ 0556-2821 10.1103/PhysRevD.23.1693
L. Barsotti, J. Harms, and R. Schnabel, Squeezed Vacuum States of Light for Gravitational Wave Detectors, Rep. Prog. Phys. 82, 016905 (2019). RPPHAG 0034-4885 10.1088/1361-6633/aab906
G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel, M. J. Szczepańczyk, and S. Vitale, Machine-Learning Nonstationary Noise Out of Gravitational-Wave Detectors, Phys. Rev. D 101, 042003 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.042003
F. Acernese (Virgo Collaboration), Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal (Equation presented) during the Observing Run O2, Classical Quantum Gravity 35, 205004 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aadf1a
A. Viets and M. Wade, Subtracting Narrow-Band Noise from LIGO Strain Data in the Third Observing Run, LIGO Report No. DCC-T2100058, 2021, https://dcc.ligo.org/LIGO-T2100058/public.
D. Davis, T. B. Littenberg, I. M. Romero-Shaw, M. Millhouse, J. McIver, F. Di Renzo, and G. Ashton, Subtracting Glitches from Gravitational-Wave Detector Data during the Third LIGO-Virgo Observing Run, Classical Quantum Gravity 39, 245013 (2022). CQGRDG 0264-9381 10.1088/1361-6382/aca238
A. D. Viets, Reconstructing the Calibrated Strain Signal in the Advanced LIGO Detectors, Classical Quantum Gravity 35, 095015 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aab658
I. Bartos, R. Bork, M. Factourovich, J. Heefner, S. Márka, Z. Márka, Z. Raics, P. Schwinberg, and D. Sigg, The Advanced LIGO Timing System, Classical Quantum Gravity 27, 084025 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084025
B. P. Abbott (LIGO Scientific Collaboration), Calibration of the Advanced LIGO Detectors for the Discovery of the Binary Black-Hole Merger GW150914, Phys. Rev. D 95, 062003 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.062003
D. Tuyenbayev, Improving LIGO Calibration Accuracy by Tracking and Compensating for Slow Temporal Variations, Classical Quantum Gravity 34, 015002 (2017). CQGRDG 0264-9381 10.1088/0264-9381/34/1/015002
L. Sun, Characterization of Systematic Error in Advanced LIGO Calibration, Classical Quantum Gravity 37, 225008 (2020). CQGRDG 0264-9381 10.1088/1361-6382/abb14e
L. Sun, Characterization of Systematic Error in Advanced LIGO Calibration in the Second Half of O3, arXiv:2107.00129.
D. Estevez, B. Mours, L. Rolland, and D. Verkindt, Online (Equation presented) Reconstruction for Virgo O3 Data: Start of O3, Virgo Report No. VIR-0652B-19, 2019, https://tds.ego-gw.it/ql/c=14486.
L. Rolland, D. Estevez, B. Mours, T. Pradier, M. Seglar Arroyo, and D. Verkindt, Update on (Equation presented) Uncertainties during O3, Virgo Report No. VIR-0688A-20, 2020, https://tds.virgo-gw.eu/ql/c=15813.
F. Acernese (Virgo Collaboration), Calibration of Advanced Virgo and Reconstruction of Detector Strain (Equation presented) during the Observing Run O3, Classical Quantum Gravity 39, 045006 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac3c8e
S. Karki, The Advanced LIGO Photon Calibrators, Rev. Sci. Instrum. 87, 114503 (2016). RSINAK 0034-6748 10.1063/1.4967303
D. Bhattacharjee, Y. Lecoeuche, S. Karki, J. Betzwieser, V. Bossilkov, S. Kandhasamy, E. Payne, and R. L. Savage, Fiducial Displacements with Improved Accuracy for the Global Network of Gravitational Wave Detectors, Classical Quantum Gravity 38, 015009 (2021). CQGRDG 0264-9381 10.1088/1361-6382/aba9ed
D. Estevez, P. Lagabbe, A. Masserot, L. Rolland, M. Seglar-Arroyo, and D. Verkindt, The Advanced Virgo Photon Calibrators, Classical Quantum Gravity 38, 075007 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abe2db
V. Tiwari, Regression of Environmental Noise in LIGO Data, Classical Quantum Gravity 32, 165014 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/16/165014
J. C. Driggers (LIGO Instrument Science Collaboration), Improving Astrophysical Parameter Estimation via Offline Noise Subtraction for Advanced LIGO, Phys. Rev. D 99, 042001 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.042001
D. Davis, T. Massinger, A. Lundgren, J. C. Driggers, A. L. Urban, and L. Nuttall, Improving the Sensitivity of Advanced LIGO Using Noise Subtraction, Classical Quantum Gravity 36, 055011 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab01c5
S. Klimenko, Method for Detection and Reconstruction of Gravitational Wave Transients with Networks of Advanced Detectors, Phys. Rev. D 93, 042004 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.042004
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914, Classical Quantum Gravity 33, 134001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/13/134001
L. K. Nuttall, Characterizing Transient Noise in the LIGO Detectors, Phil. Trans. R. Soc. A 376, 20170286 (2018). PTRMAD 1364-503X 10.1098/rsta.2017.0286
D. Davis (LIGO Instrument Science Collaboration), LIGO Detector Characterization in the Second and Third Observing Runs, Classical Quantum Gravity 38, 135014 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abfd85
F. Acernese (Virgo Collaboration), Virgo Detector Characterization and Data Quality: Results from the O3 Run, arXiv:2210.15633.
F. Robinet, N. Arnaud, N. Leroy, A. Lundgren, D. Macleod, and J. McIver, o micron: A Tool to Characterize Transient Noise in Gravitational-Wave Detectors, SoftwareX 12, 100620 (2020). 2352-7110 10.1016/j.softx.2020.100620
F. Acernese (Virgo Collaboration), The Virgo O3 Run and the Impact of the Environment, Classical Quantum Gravity 39, 235009 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac776a
T. Accadia (Virgo Collaboration), Noise from Scattered Light in Virgo's Second Science Run Data, Classical Quantum Gravity 27, 194011 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194011
D. J. Ottaway, P. Fritschel, and S. J. Waldman, Impact of Upconverted Scattered Light on Advanced Interferometric Gravitational Wave Detectors, Opt. Express 20, 8329 (2012). OPEXFF 1094-4087 10.1364/OE.20.008329
S. Soni (LIGO Instrument Science Collaboration), Reducing Scattered Light in LIGO's Third Observing Run, Classical Quantum Gravity 38, 025016 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abc906
S. Soni, Discovering Features in Gravitational-Wave Data through Detector Characterization, Citizen Science and Machine Learning, Classical Quantum Gravity 38, 195016 (2021). CQGRDG 0264-9381 10.1088/1361-6382/ac1ccb
R. Schofield, aLIGO LHO Logbook, Report No. 54298, 2020, https://alog.ligo-wa.caltech.edu/aLOG/index.phpcallRep=54298.
A. Effler, aLIGO LLO Logbook, Report No. 50851, 2020, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=50851.
S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution Techniques for the Detection of Gravitational-Wave Bursts, Classical Quantum Gravity 21, S1809 (2004). CQGRDG 0264-9381 10.1088/0264-9381/21/20/024
A. Effler, aLIGO LLO Logbook, Report No. 53025, 2020, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=53025.
A. Effler, aLIGO LLO Logbook, Report No. 53364, 2020, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=53364.
LIGO Scientific Collaboration and Virgo Collaboration, Data Quality Report User Documentation (2018), https://docs.ligo.org/detchar/data-quality-report/.
F. Acernese (Virgo Collaboration), Virgo Detector Characterization and Data Quality: Tools, arXiv:2210.15634.
C. Messick, Analysis Framework for the Prompt Discovery of Compact Binary Mergers in Gravitational-Wave Data, Phys. Rev. D 95, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.042001
S. Sachdev, The g st lal Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs, arXiv:1901.08580.
C. Hanna, Fast Evaluation of Multidetector Consistency for Real-Time Gravitational Wave Searches, Phys. Rev. D 101, 022003 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.022003
K. Cannon, g st lal: A Software Framework for Gravitational Wave Discovery, SoftwareX 14, 100680 (2021). 2352-7110 10.1016/j.softx.2021.100680
T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F. Marion, M. Montani, B. Mours, F. Piergiovanni, and G. Wang, Low-Latency Analysis Pipeline for Compact Binary Coalescences in the Advanced Gravitational Wave Detector Era, Classical Quantum Gravity 33, 175012 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/17/175012
F. Aubin, The mbta Pipeline for Detecting Compact Binary Coalescences in the Third LIGO-Virgo Observing Run, Classical Quantum Gravity 38, 095004 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abe913
B. Allen, (Equation presented) Time-Frequency Discriminator for Gravitational Wave Detection, Phys. Rev. D 71, 062001 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.062001
T. Dal Canton, Implementing a Search for Aligned-Spin Neutron Star-Black Hole Systems with Advanced Ground Based Gravitational Wave Detectors, Phys. Rev. D 90, 082004 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.082004
S. A. Usman, The p y cbc Search for Gravitational Waves from Compact Binary Coalescence, Classical Quantum Gravity 33, 215004 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/21/215004
A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A. Brown, Detecting Binary Compact-Object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the p y cbc Search, Astrophys. J. 849, 118 (2017). ASJOAB 0004-637X 10.3847/1538-4357/aa8f50
G. S. Davies, T. Dent, M. Tápai, I. Harry, C. McIsaac, and A. H. Nitz, Extending the p y cbc Search for Gravitational Waves from Compact Binary Mergers to a Global Network, Phys. Rev. D 102, 022004 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.022004
S. Klimenko and G. Mitselmakher, A Wavelet Method for Detection of Gravitational Wave Bursts, Classical Quantum Gravity 21, S1819 (2004). CQGRDG 0264-9381 10.1088/0264-9381/21/20/025
S. Klimenko, G. Vedovato, M. Drago, G. Mazzolo, G. Mitselmakher, C. Pankow, G. Prodi, V. Re, F. Salemi, and I. Yakushin, Localization of Gravitational Wave Sources with Networks of Advanced Detectors, Phys. Rev. D 83, 102001 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.102001
J. Luan, S. Hooper, L. Wen, and Y. Chen, Towards Low-Latency Real-Time Detection of Gravitational Waves from Compact Binary Coalescences in the Era of Advanced Detectors, Phys. Rev. D 85, 102002 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.102002
Q. Chu, Low-Latency Detection and Localization of Gravitational Waves from Compact Binary Coalescences, Ph.D. thesis, The University of Western Australia, 2017, 10.4225/23/5987feb0a789c.
Q. Chu, spiir Online Coherent Pipeline to Search for Gravitational Waves from Compact Binary Coalescences, Phys. Rev. D 105, 024023 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.024023
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), All-Sky Search for Short Gravitational-Wave Bursts in the First Advanced LIGO Run, Phys. Rev. D 95, 042003 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.042003
L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise, Dover Books on Physics and Mathematical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), A Guide to LIGO-Virgo Detector Noise and Extraction of Transient Gravitational-Wave Signals, Classical Quantum Gravity 37, 055002 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab685e
P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964). PHRVAO 0031-899X 10.1103/PhysRev.136.B1224
L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett. 74, 3515 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.3515
P. Ajith, Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Non-Precessing Spins, Phys. Rev. Lett. 106, 241101 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.241101
L. Santamaria, Matching Post-Newtonian and Numerical Relativity Waveforms: Systematic Errors and a New Phenomenological Model for Non-Precessing Black Hole Binaries, Phys. Rev. D 82, 064016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.064016
A. Krolak and B. F. Schutz, Coalescing Binaries-Probe of the Universe, Gen. Relativ. Gravit. 19, 1163 (1987). GRGVA8 0001-7701 10.1007/BF00759095
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run, Phys. Rev. Lett. 121, 231103 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.231103
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run, Phys. Rev. Lett. 123, 161102 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.161102
A. H. Nitz and Y.-F. Wang, Search for Gravitational Waves from High-Mass-Ratio Compact-Binary Mergers of Stellar Mass and Subsolar Mass Black Holes, Phys. Rev. Lett. 126, 021103 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.021103
A. H. Nitz and Y.-F. Wang, Search for Gravitational Waves from the Coalescence of Sub-Solar Mass and Eccentric Compact Binaries, Astrophys. J. 915, 54 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac01d9
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run, Phys. Rev. Lett. 129, 061104 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.129.061104
S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, A Coherent Method for Detection of Gravitational Wave Bursts, Classical Quantum Gravity 25, 114029 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/11/114029
V. Necula, S. Klimenko, and G. Mitselmakher, Transient analysis with Fast Wilson-Daubechies Time-Frequency Transform, J. Phys. Conf. Ser. 363, 012032 (2012). JPCSDZ 1742-6588 10.1088/1742-6596/363/1/0+32
F. Salemi, E. Milotti, G. A. Prodi, G. Vedovato, C. Lazzaro, S. Tiwari, S. Vinciguerra, M. Drago, and S. Klimenko, Wider Look at the Gravitational-Wave Transients from GWTC-1 Using an Unmodeled Reconstruction Method, Phys. Rev. D 100, 042003 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.042003
M. Drago, coherent WaveBurst, A Pipeline for Unmodeled Gravitational-Wave Data Analysis, SoftwareX 14, 100678 (2021). 2352-7110 10.1016/j.softx.2021.100678
M. Szczepańczyk, Observing an Intermediate-Mass Black Hole GW190521 with Minimal Assumptions, Phys. Rev. D 103, 082002 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.082002
W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler, Counting and Confusion: Bayesian Rate Estimation with Multiple Populations, Phys. Rev. D 91, 023005 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.023005
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, Astrophys. J. Lett. 833, L1 (2016). AJLEEY 2041-8213 10.3847/2041-8205/833/1/L1
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, Astrophys. J. Suppl. Ser. 227, 14 (2016). APJSA2 1538-4365 10.3847/0067-0049/227/2/14
S. J. Kapadia, A Self-Consistent Method to Estimate the Rate of Compact Binary Coalescences with a Poisson Mixture Model, Classical Quantum Gravity 37, 045007 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab5f2d
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913, L7 (2021). AJLEEY 2041-8213 10.3847/2041-8213/abe949
N. Andres, Assessing the Compact-Binary Merger Candidates Reported by the mbta Pipeline in the LIGO-Virgo O3 Run: Probability of Astrophysical Origin, Classification, and Associated Uncertainties, Classical Quantum Gravity 39, 055002 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac482a
S. M. Gaebel, J. Veitch, T. Dent, and W. M. Farr, Digging the Population of Compact Binary Mergers out of the Noise, Mon. Not. R. Astron. Soc. 484, 4008 (2019). MNRAA4 0035-8711 10.1093/mnras/stz225
S. Galaudage, C. Talbot, and E. Thrane, Gravitational-Wave Inference in the Catalog Era: Evolving Priors and Marginal Events, Phys. Rev. D 102, 083026 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.083026
J. Roulet, T. Venumadhav, B. Zackay, L. Dai, and M. Zaldarriaga, Binary Black Hole Mergers from LIGO/Virgo O1 and O2: Population Inference Combining Confident and Marginal Events, Phys. Rev. D 102, 123022 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.123022
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration, and CHIME/FRB Collaboration), Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB during the LIGO-Virgo Observing Run O3a, arXiv:2203.12038.
S. Banagiri, C. P. L. Berry, G. S. Cabourn Davies, L. Tsukada, and Z. Doctor, A Unified (Equation presented) for Gravitational Waves: Consistently Combining Information from Multiple Search Pipelines, arXiv:2305.00071.
P. J. Sutton, Upper Limits from Counting Experiments with Multiple Pipelines, Classical Quantum Gravity 26, 245007 (2009). CQGRDG 0264-9381 10.1088/0264-9381/26/24/245007
R. Biswas, Detecting Transient Gravitational Waves in Non-Gaussian Noise with Partially Redundant Analysis Methods, Phys. Rev. D 85, 122009 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122009
M. Cabero, Blip Glitches in Advanced LIGO Data, Classical Quantum Gravity 36, 155010 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab2e14
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101
N. Farrow, X.-J. Zhu, and E. Thrane, The Mass Distribution of Galactic Double Neutron Stars, Astrophys. J. 876, 18 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab12e3
A. H. Nitz, T. Dent, G. S. Davies, and I. Harry, A Search for Gravitational Waves from Binary Mergers with a Single Observatory, Astrophys. J. 897, 169 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab96c7
L. P. Singer and L. R. Price, Rapid Bayesian Position Reconstruction for Gravitational-Wave Transients, Phys. Rev. D 93, 024013 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.024013
L. P. Singer, Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-Up, Astrophys. J. Lett. 829, L15 (2016). AJLEEY 2041-8213 10.3847/2041-8205/829/1/L15
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241102
M. Fishbach and D. E. Holz, Where Are LIGO's Big Black Holes, Astrophys. J. Lett. 851, L25 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa9bf6
M. Fishbach, Z. Doctor, T. A. Callister, B. Edelman, J. Ye, R. Essick, W. M. Farr, B. Farr, and D. E. Holz, When Are LIGO/Virgo's Big Black Hole Mergers, Astrophys. J. 912, 98 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abee11
J. Creighton, Certain Identities in FGMC, LIGO Report No. DCC-T1700029, 2017, https://dcc.ligo.org/LIGO-T1700029/public.
C. Cutler and É. E. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Wave Form, Phys. Rev. D 49, 2658 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658
G. Pratten, Computationally Efficient Models for the Dominant and Subdominant Harmonic Modes of Precessing Binary Black Holes, Phys. Rev. D 103, 104056 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.104056
S. Ossokine, Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation, Phys. Rev. D 102, 044055 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.044055
J. E. Thompson, E. Fauchon-Jones, S. Khan, E. Nitoglia, F. Pannarale, T. Dietrich, and M. Hannam, Modeling the Gravitational Wave Signature of Neutron Star Black Hole Coalescences, Phys. Rev. D 101, 124059 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.124059
A. Matas, Aligned-Spin Neutron-Star-Black-Hole Waveform Model Based on the Effective-One-Body Approach and Numerical-Relativity Simulations, Phys. Rev. D 102, 043023 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.043023
C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G. Pratten, A. Ramos-Buades, M. Mateu-Lucena, and R. Jaume, Multimode Frequency-Domain Model for the Gravitational Wave Signal from Nonprecessing Black-Hole Binaries, Phys. Rev. D 102, 064002 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.064002
R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder, and S. Ossokine, Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics, Phys. Rev. D 98, 084028 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084028
C. P. L. Berry, Quoting Parameter-Estimation Results, LIGO Report No. DCC-T1500597, 2015, https://dcc.ligo.org/LIGO-T1500597/public.
G. Ashton and S. Khan, Multiwaveform Inference of Gravitational Waves, Phys. Rev. D 101, 064037 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.064037
G. Ashton, b ilby: A User-Friendly Bayesian Inference Library for Gravitational-Wave Astronomy, Astrophys. J. Suppl. Ser. 241, 27 (2019). APJSA2 1538-4365 10.3847/1538-4365/ab06fc
R. J. E. Smith, G. Ashton, A. Vajpeyi, and C. Talbot, Massively Parallel Bayesian Inference for Transient Gravitational-Wave Astronomy, Mon. Not. R. Astron. Soc. 498, 4492 (2020). MNRAA4 0035-8711 10.1093/mnras/staa2483
I. M. Romero-Shaw, Bayesian Inference for Compact Binary Coalescences with b ilby: Validation and Application to the First LIGO-Virgo Gravitational-Wave Transient Catalogue, Mon. Not. R. Astron. Soc. 499, 3295 (2020). MNRAA4 0035-8711 10.1093/mnras/staa2850
C. Pankow, P. Brady, E. Ochsner, and R. O'Shaughnessy, Novel Scheme for Rapid Parallel Parameter Estimation of Gravitational Waves from Compact Binary Coalescences, Phys. Rev. D 92, 023002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.023002
J. Lange, Parameter Estimation Method that Directly Compares Gravitational Wave Observations to Numerical Relativity, Phys. Rev. D 96, 104041 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.104041
D. Wysocki, R. O'Shaughnessy, J. Lange, and Y.-L. L. Fang, Accelerating Parameter Inference with Graphics Processing Units, Phys. Rev. D 99, 084026 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.084026
E. Thrane and C. Talbot, An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: Parameter Estimation, Model Selection, and Hierarchical Models, Pub. Astron. Soc. Aust. 36, e010 (2019); PASAFO 1323-3580 10.1017/pasa.2019.2
E. Thrane and C. Talbot Pub. Astron. Soc. Aust. 37, e036(E) (2020). PASAFO 1323-3580 10.1017/pasa.2020.23
T. A. Callister, A Thesaurus for Common Priors in Gravitational-Wave Astronomy, arXiv:2104.09508.
E. Poisson and C. M. Will, Gravitational Waves from Inspiraling Compact Binaries: Parameter Estimation Using Second Post-Newtonian Wave Forms, Phys. Rev. D 52, 848 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.848
E. Baird, S. Fairhurst, M. Hannam, and P. Murphy, Degeneracy between Mass and Spin in Black-Hole-Binary Waveforms, Phys. Rev. D 87, 024035 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.024035
B. Farr, Parameter Estimation on Gravitational Waves from Neutron-Star Binaries with Spinning Components, Astrophys. J. 825, 116 (2016). ASJOAB 0004-637X 10.3847/0004-637X/825/2/116
H. Estellés, A Detailed Analysis of GW190521 with Phenomenological Waveform Models, Astrophys. J. 924, 79 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac33a0
A. K. Mehta, A. Buonanno, J. Gair, M. C. Miller, E. Farag, R. J. deBoer, M. Wiescher, and F. X. Timmes, Observing Intermediate-Mass Black Holes and the Upper Stellar-Mass Gap with LIGO and Virgo, Astrophys. J. 924, 39 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac3130
H. S. Chia, S. Olsen, J. Roulet, L. Dai, T. Venumadhav, B. Zackay, and M. Zaldarriaga, Signs of Higher Multipoles and Orbital Precession in GW151226, Phys. Rev. D 106, 024009 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.024009
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Neutron Star Merger GW170817, Phys. Rev. X 9, 011001 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.011001
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW190425: Observation of a Compact Binary Coalescence with Total (Equation presented), Astrophys. J. Lett. 892, L3 (2020). AJLEEY 2041-8213 10.3847/2041-8213/ab75f5
Y. Huang, H. Middleton, K. K. Y. Ng, S. Vitale, and J. Veitch, Characterization of Low-Significance Gravitational-Wave Compact Binary Sources, Phys. Rev. D 98, 123021 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.123021
J. Powell, Parameter Estimation and Model Selection of Gravitational Wave Signals Contaminated by Transient Detector Noise Glitches, Classical Quantum Gravity 35, 155017 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aacf18
K. Chatziioannou, N. Cornish, M. Wijngaarden, and T. B. Littenberg, Modeling Compact Binary Signals and Instrumental Glitches in Gravitational Wave Data, Phys. Rev. D 103, 044013 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.044013
G. Ashton, S. Thiele, Y. Lecoeuche, J. McIver, and L. K. Nuttall, Parameterised Population Models of Transient Non-Gaussian Noise in the LIGO Gravitational-Wave Detectors, Classical Quantum Gravity 39, 175004 (2022). CQGRDG 0264-9381 10.1088/1361-6382/ac8094
P. Relton and V. Raymond, Parameter Estimation Bias from Overlapping Binary Black Hole Events in Second Generation Interferometers, Phys. Rev. D 104, 084039 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.084039
I. Mandel, Parameter Estimation on Gravitational Waves from Multiple Coalescing Binaries, Phys. Rev. D 81, 084029 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.084029
M. Fishbach, W. M. Farr, and D. E. Holz, The Most Massive Binary Black Hole Detections and the Identification of Population Outliers, Astrophys. J. Lett. 891, L31 (2020). AJLEEY 2041-8213 10.3847/2041-8213/ab77c9
S. Miller, T. A. Callister, and W. Farr, The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-Wave Events, Astrophys. J. 895, 128 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab80c0
C. Kimball, C. Talbot, C. P. L. Berry, M. Carney, M. Zevin, E. Thrane, and V. Kalogera, Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves, Astrophys. J. 900, 177 (2020). ASJOAB 0004-637X 10.3847/1538-4357/aba518
T. A. Callister, C.-J. Haster, K. K. Y. Ng, S. Vitale, and W. M. Farr, Who Ordered That Unequal-Mass Binary Black Hole Mergers Have Larger Effective Spins, Astrophys. J. Lett. 922, L5 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac2ccc
S. Vitale, R. Lynch, V. Raymond, R. Sturani, J. Veitch, and P. Graff, Parameter Estimation for Heavy Binary-Black Holes with Networks of Second-Generation Gravitational-Wave Detectors, Phys. Rev. D 95, 064053 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064053
B. Margalit and B. D. Metzger, Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817, Astrophys. J. Lett. 850, L19 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa991c
S. Ai, H. Gao, and B. Zhang, What Constraints on the Neutron Star Maximum Mass Can One Pose from GW170817 Observations, Astrophys. J. 893, 146 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab80bd
D.-S. Shao, S.-P. Tang, J.-L. Jiang, and Y.-Z. Fan, Maximum Mass Cutoff in the Neutron Star Mass Distribution and the Prospect of Forming Supramassive Objects in the Double Neutron Star Mergers, Phys. Rev. D 102, 063006 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.063006
Y. Lim, A. Bhattacharya, J. W. Holt, and D. Pati, Radius and Equation of State Constraints from Massive Neutron Stars and GW190814, Phys. Rev. C 104, L032802 (2021). PRVCAN 2469-9985 10.1103/PhysRevC.104.L032802
M. C. Miller, The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac089b
G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho, Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER's Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations, Astrophys. J. Lett. 918, L29 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac089a
P. Ajith and S. Bose, Estimating the Parameters of Non-Spinning Binary Black Holes Using Ground-Based Gravitational-Wave Detectors: Statistical Errors, Phys. Rev. D 79, 084032 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.084032
P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries, Phys. Rev. D 92, 022002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.022002
C.-J. Haster, Z. Wang, C. P. L. Berry, S. Stevenson, J. Veitch, and I. Mandel, Inference on Gravitational Waves from Coalescences of Stellar-Mass Compact Objects and Intermediate-Mass Black Holes, Mon. Not. R. Astron. Soc. 457, 4499 (2016). MNRAA4 0035-8711 10.1093/mnras/stw233
J. Veitch, M. Pürrer, and I. Mandel, Measuring Intermediate Mass Black Hole Binaries with Advanced Gravitational Wave Detectors, Phys. Rev. Lett. 115, 141101 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.141101
T. Islam, S. E. Field, C.-J. Haster, and R. Smith, High Precision Source Characterization of Intermediate Mass-Ratio Black Hole Coalescences with Gravitational Waves: The Importance of Higher Order Multipoles, Phys. Rev. D 104, 084068 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.084068
F. Echeverria, Gravitational Wave Measurements of the Mass and Angular Momentum of a Black Hole, Phys. Rev. D 40, 3194 (1989). PRVDAQ 0556-2821 10.1103/PhysRevD.40.3194
E. Berti, V. Cardoso, and C. M. Will, On Gravitational-Wave Spectroscopy of Massive Black Holes with the Space Interferometer LISA, Phys. Rev. D 73, 064030 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.064030
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW190521: A Binary Black Hole Merger with a Total Mass of (Equation presented), Phys. Rev. Lett. 125, 101102 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.101102
W. A. Fowler and F. Hoyle, Neutrino Processes and Pair Formation in Massive Stars and Supernovae, Astrophys. J. Suppl. Ser. 9, 201 (1964). APJSA2 1538-4365 10.1086/190103
Z. Barkat, G. Rakavy, and N. Sack, Dynamics of Supernova Explosion Resulting from Pair Formation, Phys. Rev. Lett. 18, 379 (1967). PRLTAO 0031-9007 10.1103/PhysRevLett.18.379
C. L. Fryer, S. E. Woosley, and A. Heger, Pair Instability Supernovae, Gravity Waves, and Gamma-Ray Transients, Astrophys. J. 550, 372 (2001). ASJOAB 0004-637X 10.1086/319719
K. Belczynski, The Effect of Pair-Instability Mass Loss on Black Hole Mergers, Astron. Astrophys. 594, A97 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201628980
M. Spera and M. Mapelli, Very Massive Stars, Pair-Instability Supernovae and Intermediate-Mass Black Holes with the sevn Code, Mon. Not. R. Astron. Soc. 470, 4739 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1576
S. Stevenson, M. Sampson, J. Powell, A. Vigna-Gómez, C. J. Neijssel, D. Szécsi, and I. Mandel, The Impact of Pair-Instability Mass Loss on the Binary Black Hole Mass Distribution, Astrophys. J. 882, 121 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab3981
R. Farmer, M. Renzo, S. E. de Mink, P. Marchant, and S. Justham, Mind the Gap: The Location of the Lower Edge of the Pair Instability Supernovae Black Hole Mass Gap, Astrophys. J. 887, 53 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab518b
L. A. C. van Son, S. E. de Mink, F. S. Broekgaarden, M. Renzo, S. Justham, E. Laplace, J. Morán-Fraile, D. D. Hendriks, and R. Farmer, Polluting the Pair-Instability Mass Gap for Binary Black Holes through Super-Eddington Accretion in Isolated Binaries, Astrophys. J. 897, 100 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab9809
P. Marchant and T. Moriya, The Impact of Stellar Rotation on the Black Hole Mass-Gap from Pair-Instability Supernovae, Astron. Astrophys. 640, L18 (2020). AAEJAF 0004-6361 10.1051/0004-6361/202038902
G. Costa, A. Bressan, M. Mapelli, P. Marigo, G. Iorio, and M. Spera, Formation of GW190521 from Stellar Evolution: The Impact of the Hydrogen-Rich Envelope, Dredge-Up and (Equation presented) Rate on the Pair-Instability Black Hole Mass Gap, Mon. Not. R. Astron. Soc. 501, 4514 (2021). MNRAA4 0035-8711 10.1093/mnras/staa3916
A. Tanikawa, T. Kinugawa, T. Yoshida, K. Hijikawa, and H. Umeda, Population III Binary Black Holes: Effects of Convective Overshooting on Formation of GW190521, Mon. Not. R. Astron. Soc. 505, 2170 (2020). MNRAA4 0035-8711 10.1093/mnras/stab1421
H. Umeda, T. Yoshida, C. Nagele, and K. Takahashi, Pulsational Pair-Instability and the Mass Gap of Population III Black Holes: Effects of Overshooting, Astrophys. J. Lett. 905, L21 (2020). AJLEEY 2041-8213 10.3847/2041-8213/abcb96
J. S. Vink, E. R. Higgins, A. A. C. Sander, and G. N. Sabhahit, Maximum Black Hole Mass across Cosmic Time, Mon. Not. R. Astron. Soc. 504, 146 (2021). MNRAA4 0035-8711 10.1093/mnras/stab842
S. E. Woosley and A. Heger, The Pair-Instability Mass Gap for Black Holes, Astrophys. J. Lett. 912, L31 (2021). AJLEEY 2041-8213 10.3847/2041-8213/abf2c4
R. Farmer, M. Renzo, S. de Mink, M. Fishbach, and S. Justham, Constraints from Gravitational Wave Detections of Binary Black Hole Mergers on the (Equation presented) Rate, Astrophys. J. Lett. 902, L36 (2020). AJLEEY 2041-8213 10.3847/2041-8213/abbadd
M. Renzo, R. Farmer, S. Justham, Y. Götberg, S. E. de Mink, E. Zapartas, P. Marchant, and N. Smith, Predictions for the Hydrogen-Free Ejecta of Pulsational Pair-Instability Supernovae, Astron. Astrophys. 640, A56 (2020). AAEJAF 0004-6361 10.1051/0004-6361/202037710
C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, The Mass Distribution of Stellar Black Holes, Astrophys. J. 499, 367 (1998). ASJOAB 0004-637X 10.1086/305614
F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, The Black Hole Mass Distribution in the Galaxy, Astrophys. J. 725, 1918 (2010). ASJOAB 0004-637X 10.1088/0004-637X/725/2/1918
W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and V. Kalogera, The Mass Distribution of Stellar-Mass Black Holes, Astrophys. J. 741, 103 (2011). ASJOAB 0004-637X 10.1088/0004-637X/741/2/103
L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, Mass Measurements of Black Holes in X-Ray Transients: Is There a Mass Gap, Astrophys. J. 757, 36 (2012). ASJOAB 0004-637X 10.1088/0004-637X/757/1/36
C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity, Astrophys. J. 749, 91 (2012). ASJOAB 0004-637X 10.1088/0004-637X/749/1/91
I. Mandel and B. Müller, Simple Recipes for Compact Remnant Masses and Natal Kicks, Mon. Not. R. Astron. Soc. 499, 3214 (2020). MNRAA4 0035-8711 10.1093/mnras/staa3043
M. Zevin, M. Spera, C. P. L. Berry, and V. Kalogera, Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution, Astrophys. J. Lett. 899, L1 (2020). AJLEEY 2041-8213 10.3847/2041-8213/aba74e
T. Liu, Y.-F. Wei, L. Xue, and M.-Y. Sun, Final Compact Remnants in Core-Collapse Supernovae from 20 to (Equation presented): The Lower Mass Gap, Astrophys. J. 908, 106 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abd24e
R. A. Patton, T. Sukhbold, and J. J. Eldridge, Comparing Compact Object Distributions from Mass-and Presupernova Core Structure-Based Prescriptions, Mon. Not. R. Astron. Soc. 511, 903 (2022). MNRAA4 0035-8711 10.1093/mnras/stab3797
T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M. Zaldarriaga, New Search Pipeline for Compact Binary Mergers: Results for Binary Black Holes in the First Observing Run of Advanced LIGO, Phys. Rev. D 100, 023011 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.023011
J. Roulet, H. S. Chia, S. Olsen, L. Dai, T. Venumadhav, B. Zackay, and M. Zaldarriaga, On the Distribution of Effective Spins and Masses of Binary Black Holes from the LIGO and Virgo O1-O3a Observing Runs, Phys. Rev. D 104, 083010 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.083010
J. Casares and P. G. Jonker, Mass Measurements of Stellar and Intermediate Mass Black-Holes, Space Sci. Rev. 183, 223 (2014). SPSRA4 0038-6308 10.1007/s11214-013-0030-6
J. Casares, I. Negueruela, M. Ribó, I. Ribas, J. M. Paredes, A. Herrero, and S. Simón-Díaz, A Be-Type Star with a Black-Hole Companion, Nature (London) 505, 378 (2014). NATUAS 0028-0836 10.1038/nature12916
J. M. Corral-Santana, J. Casares, T. Muñoz-Darias, F. E. Bauer, I. G. Martinez-Pais, and D. M. Russell, BlackCAT: A Catalogue of Stellar-Mass Black Holes in X-Ray Transients, Astron. Astrophys. 587, A61 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201527130
J. C. A. Miller-Jones, Cygnus X-1 Contains a 21-Solar Mass Black Hole-Implications for Massive Star Winds, Science 371, 1046 (2021). SCIEAS 0036-8075 10.1126/science.abb3363
K. Belczynski, T. Bulik, and C. L. Fryer, High Mass X-Ray Binaries: Future Evolution and Fate, arXiv:1208.2422.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Implications of the Binary Black-Hole Merger GW150914, Astrophys. J. Lett. 818, L22 (2016). AJLEEY 2041-8213 10.3847/2041-8205/818/2/L22
C. J. Neijssel, S. Vinciguerra, A. Vigna-Gomez, R. Hirai, J. C. A. Miller-Jones, A. Bahramian, T. J. Maccarone, and I. Mandel, Wind Mass-Loss Rates of Stripped Stars Inferred from Cygnus X-1, Astrophys. J. 908, 118 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abde4a
J. Puls, J. S. Vink, and F. Najarro, Mass Loss from Hot Massive Stars, Astron. Astrophys. Rev. 16, 209 (2008). AASREB 0935-4956 10.1007/s00159-008-0015-8
N. Smith, Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars, Annu. Rev. Astron. Astrophys. 52, 487 (2014). ARAAAJ 0066-4146 10.1146/annurev-astro-081913-040025
J. S. Vink and A. A. C. Sander, Metallicity-Dependent Wind Parameter Predictions for OB Stars, Mon. Not. R. Astron. Soc. 504, 2051 (2021). MNRAA4 0035-8711 10.1093/mnras/stab902
K. Belczynski, T. Bulik, C. L. Fryer, A. Ruiter, J. S. Vink, and J. R. Hurley, On the Maximum Mass of Stellar Black Holes, Astrophys. J. 714, 1217 (2010). ASJOAB 0004-637X 10.1088/0004-637X/714/2/1217
J. J. Eldridge, E. R. Stanway, L. Xiao, L. A. S. McClelland, G. Taylor, M. Ng, S. M. L. Greis, and J. C. Bray, Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results, Pub. Astron. Soc. Aust. 34, e058 (2017). PASAFO 1323-3580 10.1017/pasa.2017.51
N. Giacobbo, M. Mapelli, and M. Spera, Merging Black Hole Binaries: The Effects of Progenitor's Metallicity, Mass-Loss Rate and Eddington Factor, Mon. Not. R. Astron. Soc. 474, 2959 (2018). MNRAA4 0035-8711 10.1093/mnras/stx2933
C. J. Neijssel, A. Vigna-Gómez, S. Stevenson, J. W. Barrett, S. M. Gaebel, F. Broekgaarden, S. E. de Mink, D. Szécsi, S. Vinciguerra, and I. Mandel, The Effect of the Metallicity-Specific Star Formation History on Double Compact Object Mergers, Mon. Not. R. Astron. Soc. 490, 3740 (2019). MNRAA4 0035-8711 10.1093/mnras/stz2840
E. R. Higgins, A. A. C. Sander, J. S. Vink, and R. Hirschi, Evolution of Wolf-Rayet Stars as Black Hole Progenitors, Mon. Not. R. Astron. Soc. 505, 4874 (2021). MNRAA4 0035-8711 10.1093/mnras/stab1548
S. Stevenson, F. Ohme, and S. Fairhurst, Distinguishing Compact Binary Population Synthesis Models Using Gravitational-Wave Observations of Coalescing Binary Black Holes, Astrophys. J. 810, 58 (2015). ASJOAB 0004-637X 10.1088/0004-637X/810/1/58
J. W. Barrett, S. M. Gaebel, C. J. Neijssel, A. Vigna-Gómez, S. Stevenson, C. P. L. Berry, W. M. Farr, and I. Mandel, Accuracy of Inference on the Physics of Binary Evolution from Gravitational-Wave Observations, Mon. Not. R. Astron. Soc. 477, 4685 (2018). MNRAA4 0035-8711 10.1093/mnras/sty908
A. Hall, A. D. Gow, and C. T. Byrnes, Bayesian Analysis of LIGO-Virgo Mergers: Primordial versus Astrophysical Black Hole Populations, Phys. Rev. D 102, 123524 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.123524
S. S. Bavera, The Impact of Mass-Transfer Physics on the Observable Properties of Field Binary Black Hole Populations, Astron. Astrophys. 647, A153 (2021). AAEJAF 0004-6361 10.1051/0004-6361/202039804
Y. Bouffanais, M. Mapelli, F. Santoliquido, N. Giacobbo, G. Iorio, and G. Costa, Constraining Accretion Efficiency in Massive Binary Stars with LIGO-Virgo Black Holes, Mon. Not. R. Astron. Soc. 505, 3873 (2021). MNRAA4 0035-8711 10.1093/mnras/stab1589
M. Zevin, S. S. Bavera, C. P. L. Berry, V. Kalogera, T. Fragos, P. Marchant, C. L. Rodriguez, F. Antonini, D. E. Holz, and C. Pankow, One Channel to Rule Them All Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways, Astrophys. J. 910, 152 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abe40e
G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti, P. Pani, A. Riotto, and S. Vitale, Searching for a Subpopulation of Primordial Black Holes in LIGO-Virgo Gravitational-Wave Data, Phys. Rev. D 105, 083526 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.083526
M. Mapelli, Y. Bouffanais, F. Santoliquido, M. A. Sedda, and M. C. Artale, The Cosmic Evolution of Binary Black Holes in Young, Globular, and Nuclear Star Clusters: Rates, Masses, Spins, and Mixing Fractions, Mon. Not. R. Astron. Soc. 511, 5797 (2022). MNRAA4 0035-8711 10.1093/mnras/stac422
J. G. Baker, W. D. Boggs, J. Centrella, B. J. Kelly, S. T. McWilliams, and J. R. van Meter, Mergers of Non-Spinning Black-Hole Binaries: Gravitational Radiation Characteristics, Phys. Rev. D 78, 044046 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.78.044046
C. Reisswig, S. Husa, L. Rezzolla, E. N. Dorband, D. Pollney, and J. Seiler, Gravitational-Wave Detectability of Equal-Mass Black-Hole Binaries with Aligned Spins, Phys. Rev. D 80, 124026 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.124026
J. Healy and C. O. Lousto, Remnant of Binary Black-Hole Mergers: New Simulations and Peak Luminosity Studies, Phys. Rev. D 95, 024037 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024037
X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam, S. Khan, and M. Pürrer, Hierarchical Data-Driven Approach to Fitting Numerical Relativity Data for Nonprecessing Binary Black Holes with an Application to Final Spin and Radiated Energy, Phys. Rev. D 95, 064024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064024
M. C. Miller and E. J. M. Colbert, Intermediate-Mass Black Holes, Int. J. Mod. Phys. D 13, 1 (2004). IMPDEO 0218-2718 10.1142/S0218271804004426
J. E. Greene, J. Strader, and L. C. Ho, Intermediate-Mass Black Holes, Annu. Rev. Astron. Astrophys. 58, 257 (2020). ARAAAJ 0066-4146 10.1146/annurev-astro-032620-021835
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, Astrophys. J. Lett. 896, L44 (2020). AJLEEY 2041-8213 10.3847/2041-8213/ab960f
J. Alsing, H. O. Silva, and E. Berti, Evidence for a Maximum Mass Cut-Off in the Neutron Star Mass Distribution and Constraints on the Equation of State, Mon. Not. R. Astron. Soc. 478, 1377 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1065
E. Fonseca, Refined Mass and Geometric Measurements of the High-Mass PSR J0740+6620, Astrophys. J. Lett. 915, L12 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac03b8
D. J. Reardon, The Parkes Pulsar Timing Array Second Data Release: Timing Analysis, Mon. Not. R. Astron. Soc. 507, 2137 (2021). MNRAA4 0035-8711 10.1093/mnras/stab1990
T. A. Thompson, A Noninteracting Low-Mass Black Hole-Giant Star Binary System, Science 366, 637 (2019). SCIEAS 0036-8075 10.1126/science.aau4005
T. Jayasinghe, A Unicorn in Monoceros: The (Equation presented) Dark Companion to the Bright, Nearby Red Giant V723 Mon Is a Non-Interacting, Mass-Gap Black Hole Candidate, Mon. Not. R. Astron. Soc. 504, 2577 (2021). MNRAA4 0035-8711 10.1093/mnras/stab907
K. El-Badry, R. Seeburger, T. Jayasinghe, H.-W. Rix, S. Almada, C. Conroy, A. M. Price-Whelan, and K. Burdge, Unicorns and Giraffes in the Binary Zoo: Stripped Giants with Subgiant Companions, Mon. Not. R. Astron. Soc. 512, 5620 (2022). MNRAA4 0035-8711 10.1093/mnras/stac815
P. C. C. Freire, S. M. Ransom, S. Begin, I. H. Stairs, J. W. T. Hessels, L. H. Frey, and F. Camilo, Eight New Millisecond Pulsars in NGC 6440 and NGC 6441, Astrophys. J. 675, 670 (2008). ASJOAB 0004-637X 10.1086/526338
R. Essick and P. Landry, Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass, Astrophys. J. 904, 80 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abbd3b
D. A. Godzieba, D. Radice, and S. Bernuzzi, On the Maximum Mass of Neutron Stars and GW190814, Astrophys. J. 908, 122 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abd4dd
K. Huang, J. Hu, Y. Zhang, and H. Shen, The Possibility of the Secondary Object in GW190814 as a Neutron Star, Astrophys. J. 904, 39 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abbb37
E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A Lower Bound on the Maximum Mass if the Secondary in GW190814 Was Once a Rapidly Spinning Neutron Star, Mon. Not. R. Astron. Soc. 499, L82 (2020). MNRAA4 0035-8711 10.1093/mnrasl/slaa168
A. Tsokaros, M. Ruiz, and S. L. Shapiro, GW190814: Spin and Equation of State of a Neutron Star Companion, Astrophys. J. 905, 48 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abc421
I. Tews, P. T. H. Pang, T. Dietrich, M. W. Coughlin, S. Antier, M. Bulla, J. Heinzel, and L. Issa, On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter, Astrophys. J. Lett. 908, L1 (2021). AJLEEY 2041-8213 10.3847/2041-8213/abdaae
F. Özel and P. Freire, Masses, Radii, and the Equation of State of Neutron Stars, Annu. Rev. Astron. Astrophys. 54, 401 (2016). ARAAAJ 0066-4146 10.1146/annurev-astro-081915-023322
J. G. Martinez, K. Stovall, P. C. C. Freire, J. S. Deneva, F. A. Jenet, M. A. McLaughlin, M. Bagchi, S. D. Bates, and A. Ridolfi, Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry, Astrophys. J. 812, 143 (2015). ASJOAB 0004-637X 10.1088/0004-637X/812/2/143
T. M. Tauris and H.-T. Janka, J0453+1559: A Neutron Star-White Dwarf Binary from a Thermonuclear Electron-Capture Supernova, Astrophys. J. Lett. 886, L20 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab5642
R. D. Ferdman, A Precise Mass Measurement of the Intermediate-Mass Binary Pulsar PSR J1802-2124, Astrophys. J. 711, 764 (2010). ASJOAB 0004-637X 10.1088/0004-637X/711/2/764
M. Falanga, E. Bozzo, A. Lutovinov, J. M. Bonnet-Bidaud, Y. Fetisova, and J. Puls, Ephemeris, Orbital Decay, and Masses of Ten Eclipsing High-Mass X-Ray Binaries, Astron. Astrophys. 577, A130 (2015). AAEJAF 0004-6361 10.1051/0004-6361/201425191
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Model Comparison from LIGO-Virgo Data on GW170817's Binary Components and Consequences for the Merger Remnant, Classical Quantum Gravity 37, 045006 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab5f7c
R. Essick, P. Landry, and D. E. Holz, Nonparametric Inference of Neutron Star Composition, Equation of State, and Maximum Mass with GW170817, Phys. Rev. D 101, 063007 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.063007
K. Chatziioannou and W. M. Farr, Inferring the Maximum and Minimum Mass of Merging Neutron Stars with Gravitational Waves, Phys. Rev. D 102, 064063 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.064063
D. Wysocki, R. O'Shaughnessy, L. Wade, and J. Lange, Inferring the Neutron Star Equation of State Simultaneously with the Population of Merging Neutron Stars, arXiv:2001.01747.
J. Golomb and C. Talbot, Hierarchical Inference of Binary Neutron Star Mass Distribution and Equation of State with Gravitational Waves, Astrophys. J. 926, 79 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac43bc
T. M. Tauris, N. Langer, and Ph. Podsiadlowski, Ultra-Stripped Supernovae: Progenitors and Fate, Mon. Not. R. Astron. Soc. 451, 2123 (2015). MNRAA4 0035-8711 10.1093/mnras/stv990
B. Müller, T. M. Tauris, A. Heger, P. Banerjee, Y. Z. Qian, J. Powell, C. Chan, D. W. Gay, and N. Langer, Three-Dimensional Simulations of Neutrino-Driven Core-Collapse Supernovae from Low-Mass Single and Binary Star Progenitors, Mon. Not. R. Astron. Soc. 484, 3307 (2019). MNRAA4 0035-8711 10.1093/mnras/stz216
A. Vigna-Gómez, On the Formation History of Galactic Double Neutron Stars, Mon. Not. R. Astron. Soc. 481, 4009 (2018). MNRAA4 0035-8711 10.1093/mnras/sty2463
Y. Suwa, T. Yoshida, M. Shibata, H. Umeda, and K. Takahashi, On the Minimum Mass of Neutron Stars, Mon. Not. R. Astron. Soc. 481, 3305 (2018). MNRAA4 0035-8711 10.1093/mnras/sty2460
A. Burrows, D. Radice, D. Vartanyan, H. Nagakura, M. A. Skinner, and J. Dolence, The Overarching Framework of Core-Collapse Supernova Explosions as Revealed by 3D Fornax Simulations, Mon. Not. R. Astron. Soc. 491, 2715 (2020). MNRAA4 0035-8711 10.1093/mnras/stz3223
T. Ertl, S. E. Woosley, T. Sukhbold, and H. T. Janka, The Explosion of Helium Stars Evolved with Mass Loss, Astrophys. J. 890, 51 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab6458
S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani, Measuring the Spin of Black Holes in Binary Systems Using Gravitational Waves, Phys. Rev. Lett. 112, 251101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.251101
K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes, Spin-Precession: Breaking the Black Hole-Neutron Star Degeneracy, Astrophys. J. Lett. 798, L17 (2015). AJLEEY 2041-8213 10.1088/2041-8205/798/1/L17
G. Pratten, P. Schmidt, R. Buscicchio, and L. M. Thomas, Measuring Precession in Asymmetric Compact Binaries, Phys. Rev. Res. 2, 043096 (2020). PPRHAI 2643-1564 10.1103/PhysRevResearch.2.043096
T. Damour, Coalescence of Two Spinning Black Holes: An Effective One-Body Approach, Phys. Rev. D 64, 124013 (2001). PRVDAQ 0556-2821 10.1103/PhysRevD.64.124013
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativity 17, 2 (2014). 1433-8351 10.12942/lrr-2014-2
M. Pürrer, M. Hannam, and F. Ohme, Can We Measure Individual Black-Hole Spins from Gravitational-Wave Observations, Phys. Rev. D 93, 084042 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084042
K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioannou, D. Gerosa, and C.-J. Haster, Gravitational-Wave Astrophysics with Effective-Spin Measurements: Asymmetries and Selection Biases, Phys. Rev. D 98, 083007 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.083007
M. Zevin, C. P. L. Berry, S. Coughlin, K. Chatziioannou, and S. Vitale, You Can't Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412, Astrophys. J. Lett. 899, L17 (2020). AJLEEY 2041-8213 10.3847/2041-8213/aba8ef
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.151101
P. Schmidt, F. Ohme, and M. Hannam, Towards Models of Gravitational Waveforms from Generic Binaries II: Modelling Precession Effects with a Single Effective Precession Parameter, Phys. Rev. D 91, 024043 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.024043
É. Racine, Analysis of Spin Precession in Binary Black Hole Systems Including Quadrupole-Monopole Interaction, Phys. Rev. D 78, 044021 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.78.044021
M. Campanelli, C. O. Lousto, and Y. Zlochower, Spinning-Black-Hole Binaries: The Orbital Hang Up, Phys. Rev. D 74, 041501 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.041501
M. Pürrer, M. Hannam, P. Ajith, and S. Husa, Testing the Validity of the Single-Spin Approximation in Inspiral-Merger-Ringdown Waveforms, Phys. Rev. D 88, 064007 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.064007
J. Roulet and M. Zaldarriaga, Constraints on Binary Black Hole Populations from LIGO-Virgo Detections, Mon. Not. R. Astron. Soc. 484, 4216 (2019). MNRAA4 0035-8711 10.1093/mnras/stz226
T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne, Spin Induced Orbital Precession and Its Modulation of the Gravitational Wave Forms from Merging Binaries, Phys. Rev. D 49, 6274 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.6274
L. E. Kidder, Coalescing Binary Systems of Compact Objects to (Equation presented) post (Equation presented)-Newtonian Order. V. Spin Effects, Phys. Rev. D 52, 821 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.821
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model, Phys. Rev. X 6, 041014 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041014
R. Green, C. Hoy, S. Fairhurst, M. Hannam, F. Pannarale, and C. Thomas, Identifying when Precession Can Be Measured in Gravitational Waveforms, Phys. Rev. D 103, 124023 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.124023
D. Gerosa, M. Kesden, U. Sperhake, E. Berti, and R. O'Shaughnessy, Multi-Timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries, Phys. Rev. D 92, 064016 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.064016
N. K. Johnson-McDaniel, S. Kulkarni, and A. Gupta, Inferring Spin Tilts at Formation from Gravitational Wave Observations of Binary Black Holes: Interfacing Precession-Averaged and Orbit-Averaged Spin Evolution, Phys. Rev. D 106, 023001 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.023001
K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish, Constructing Gravitational Waves from Generic Spin-Precessing Compact Binary Inspirals, Phys. Rev. D 95, 104004 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.104004
I. Mandel and R. O'Shaughnessy, Compact Binary Coalescences in the Band of Ground-Based Gravitational-Wave Detectors, Classical Quantum Gravity 27, 114007 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/11/114007
S. Vitale, R. Lynch, R. Sturani, and P. Graff, Use of Gravitational Waves to Probe the Formation Channels of Compact Binaries, Classical Quantum Gravity 34, 03LT01 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa552e
S. Stevenson, C. P. L. Berry, and I. Mandel, Hierarchical Analysis of Gravitational-Wave Measurements of Binary Black Hole Spin-Orbit Misalignments, Mon. Not. R. Astron. Soc. 471, 2801 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1764
M. Fishbach, D. E. Holz, and B. Farr, Are LIGO's Black Holes Made from Smaller Black Holes, Astrophys. J. Lett. 840, L24 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa7045
C. Talbot and E. Thrane, Determining the Population Properties of Spinning Black Holes, Phys. Rev. D 96, 023012 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.023012
B. Mckernan, Constraining Stellar-Mass Black Hole Mergers in AGN Disks Detectable with LIGO, Astrophys. J. 866, 66 (2018). ASJOAB 0004-637X 10.3847/1538-4357/aadae5
Y. Yang, Hierarchical Black Hole Mergers in Active Galactic Nuclei, Phys. Rev. Lett. 123, 181101 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.181101
B. McKernan, K. E. S. Ford, R. O'Shaughnessy, and D. Wysocki, Monte Carlo Simulations of Black Hole Mergers in AGN Discs: Low (Equation presented) Mergers and Predictions for LIGO, Mon. Not. R. Astron. Soc. 494, 1203 (2020). MNRAA4 0035-8711 10.1093/mnras/staa740
A. Secunda, J. Bellovary, M.-M. Mac Low, K. E. S. Ford, B. McKernan, N. W. C. Leigh, W. Lyra, Z. Sandor, and J. I. Adorno, Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes II. Spins and Incoming Objects, Astrophys. J. 903, 133 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abbc1d
H. Tagawa, Z. Haiman, I. Bartos, and B. Kocsis, Spin Evolution of Stellar-Mass Black Hole Binaries in Active Galactic Nuclei, Astrophys. J. 899, 26 (2020). ASJOAB 0004-637X 10.3847/1538-4357/aba2cc
V. Kalogera, Spin Orbit Misalignment in Close Binaries with Two Compact Objects, Astrophys. J. 541, 319 (2000). ASJOAB 0004-637X 10.1086/309400
C. L. Rodriguez, M. Zevin, C. Pankow, V. Kalogera, and F. A. Rasio, Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO, Astrophys. J. Lett. 832, L2 (2016). AJLEEY 2041-8213 10.3847/2041-8205/832/1/L2
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017); PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 121, 129901(E) (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.129901
T. A. Callister, W. M. Farr, and M. Renzo, State of the Field: Binary Black Hole Natal Kicks and Prospects for Isolated Field Formation after GWTC-2, Astrophys. J. 920, 157 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac1347
N. Steinle and M. Kesden, Pathways for Producing Binary Black Holes with Large Misaligned Spins in the Isolated Formation Channel, Phys. Rev. D 103, 063032 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063032
C. Chan, B. Müller, and A. Heger, The Impact of Fallback on the Compact Remnants and Chemical Yields of Core-Collapse Supernovae, Mon. Not. R. Astron. Soc. 495, 3751 (2020). MNRAA4 0035-8711 10.1093/mnras/staa1431
G. Fragione, A. Loeb, and F. A. Rasio, Impact of Natal Kicks on Merger Rates and Spin-Orbit Misalignments of Black Hole-Neutron Star Mergers, Astrophys. J. Lett. 918, L38 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac225a
Y. Huang, C.-J. Haster, S. Vitale, A. Zimmerman, J. Roulet, T. Venumadhav, B. Zackay, L. Dai, and M. Zaldarriaga, Source Properties of the Lowest Signal-to-Noise-Ratio Binary Black Hole Detections, Phys. Rev. D 102, 103024 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.103024
G. Pratten and A. Vecchio, Assessing Gravitational-Wave Binary Black Hole Candidates with Bayesian Odds, Phys. Rev. D 104, 124039 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.124039
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.043015
S. Biscoveanu, M. Isi, S. Vitale, and V. Varma, New Spin on LIGO-Virgo Binary Black Holes, Phys. Rev. Lett. 126, 171103 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.171103
F. Pretorius, Evolution of Binary Black Hole Spacetimes, Phys. Rev. Lett. 95, 121101 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.121101
J. A. González, U. Sperhake, B. Brügmann, M. Hannam, and S. Husa, The Maximum Kick from Nonspinning Black-Hole Binary Inspiral, Phys. Rev. Lett. 98, 091101 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.091101
A. Buonanno, L. E. Kidder, and L. Lehner, Estimating the Final Spin of a Binary Black Hole Coalescence, Phys. Rev. D 77, 026004 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.026004
J. T. Gálvez Ghersi and L. C. Stein, A Fixed Point for Black Hole Distributions, Classical Quantum Gravity 38, 045012 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abcfd2
M. C. Miller and J. M. Miller, The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes, Phys. Rep. 548, 1 (2014). PRPLCM 0370-1573 10.1016/j.physrep.2014.09.003
C. S. Reynolds, Observational Constraints on Black Hole Spin, Annu. Rev. Astron. Astrophys. 59, 117 (2021). ARAAAJ 0066-4146 10.1146/annurev-astro-112420-035022
Ph. Podsiadlowski, S. Rappaport, and Z. Han, On the Formation and Evolution of Black Hole Binaries, Mon. Not. R. Astron. Soc. 341, 385 (2003). MNRAA4 0035-8711 10.1046/j.1365-8711.2003.06464.x
T. Fragos and J. E. McClintock, The Origin of Black Hole Spin in Galactic Low-Mass X-Ray Binaries, Astrophys. J. 800, 17 (2015). ASJOAB 0004-637X 10.1088/0004-637X/800/1/17
M. Sørensen, T. Fragos, J. F. Steiner, V. Antoniou, G. Meynet, and F. Dosopoulou, Unraveling the Formation History of the Black Hole X-Ray Binary LMC X-3 from the Zero Age Main Sequence to the Present, Astron. Astrophys. 597, A12 (2017). AAEJAF 0004-6361 10.1051/0004-6361/201628979
F. Valsecchi, E. Glebbeek, W. M. Farr, T. Fragos, B. Willems, J. A. Orosz, J. Liu, and V. Kalogera, Formation of the Black-Hole Binary M33 X-7 via Mass-Exchange in a Tight Massive System, Nature (London) 468, 77 (2010). NATUAS 0028-0836 10.1038/nature09463
Y. Qin, P. Marchant, T. Fragos, G. Meynet, and V. Kalogera, On the Origin of Black-Hole Spin in High-Mass X-Ray Binaries, Astrophys. J. Lett. 870, L18 (2019). AJLEEY 2041-8213 10.3847/2041-8213/aaf97b
D. Kushnir, M. Zaldarriaga, J. A. Kollmeier, and R. Waldman, GW150914: Spin Based Constraints on the Merger Time of the Progenitor System, Mon. Not. R. Astron. Soc. 462, 844 (2016). MNRAA4 0035-8711 10.1093/mnras/stw1684
K. Hotokezaka and T. Piran, Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO, Astrophys. J. 842, 111 (2017). ASJOAB 0004-637X 10.3847/1538-4357/aa6f61
K. Belczynski, Evolutionary Roads Leading to Low Effective Spins, High Black Hole Masses, and O1/O2 Rates for LIGO/Virgo Binary Black Holes, Astron. Astrophys. 636, A104 (2020). AAEJAF 0004-6361 10.1051/0004-6361/201936528
Y. Qin, T. Fragos, G. Meynet, J. Andrews, M. Sørensen, and H. F. Song, The Spin of the Second-Born Black Hole in Coalescing Binary Black Holes, Astron. Astrophys. 616, A28 (2018). AAEJAF 0004-6361 10.1051/0004-6361/201832839
J. Fuller and L. Ma, Most Black Holes Are Born Very Slowly Rotating, Astrophys. J. Lett. 881, L1 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab339b
S. S. Bavera, T. Fragos, Y. Qin, E. Zapartas, C. J. Neijssel, I. Mandel, A. Batta, S. M. Gaebel, C. Kimball, and S. Stevenson, The Origin of Spin in Binary Black Holes: Predicting the Distributions of the Main Observables of Advanced LIGO, Astron. Astrophys. 635, A97 (2020). AAEJAF 0004-6361 10.1051/0004-6361/201936204
I. Mandel and T. Fragos, An Alternative Interpretation of GW190412 as a Binary Black Hole Merger with a Rapidly Spinning Secondary, Astrophys. J. Lett. 895, L28 (2020). AJLEEY 2041-8213 10.3847/2041-8213/ab8e41
A. Olejak and K. Belczynski, The Implications of High Black Hole Spins for the Origin of Binary Black Hole Mergers, Astrophys. J. Lett. 921, L2 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac2f48
S. E. de Mink, M. Cantiello, N. Langer, O. R. Pols, I. Brott, and S.-Ch. Yoon, Rotational Mixing in Massive Binaries: Detached Short-Period Systems, Astron. Astrophys. 497, 243 (2009). AAEJAF 0004-6361 10.1051/0004-6361/200811439
I. Mandel and S. E. de Mink, Merging Binary Black Holes Formed through Chemically Homogeneous Evolution in Short-Period Stellar Binaries, Mon. Not. R. Astron. Soc. 458, 2634 (2016). MNRAA4 0035-8711 10.1093/mnras/stw379
L. du Buisson, P. Marchant, Ph. Podsiadlowski, C. Kobayashi, F. B. Abdalla, P. Taylor, I. Mandel, S. E. de Mink, T. J. Moriya, and N. Langer, Cosmic Rates of Black Hole Mergers and Pair-Instability Supernovae from Chemically Homogeneous Binary Evolution, Mon. Not. R. Astron. Soc. 499, 5941 (2020). MNRAA4 0035-8711 10.1093/mnras/staa3225
P. Marchant, N. Langer, Ph. Podsiadlowski, T. M. Tauris, and T. J. Moriya, A New Route towards Merging Massive Black Holes, Astron. Astrophys. 588, A50 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201628133
M. Mirbabayi, A. Gruzinov, and J. Noreña, Spin of Primordial Black Holes, J. Cosmol. Astropart. Phys. 03 (2020) 017. JCAPBP 1475-7516 10.1088/1475-7516/2020/03/017
V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, The Initial Spin Probability Distribution of Primordial Black Holes, J. Cosmol. Astropart. Phys. 05 (2019) 018. JCAPBP 1475-7516 10.1088/1475-7516/2019/05/018
T. Harada, C.-M. Yoo, K. Kohri, Y. Koga, and T. Monobe, Spins of Primordial Black Holes Formed in the Radiation-Dominated Phase of the Universe: First-Order Effect, Astrophys. J. 908, 140 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abd9b9
E. Berti and M. Volonteri, Cosmological Black Hole Spin Evolution by Mergers and Accretion, Astrophys. J. 684, 822 (2008). ASJOAB 0004-637X 10.1086/590379
V. De Luca, G. Franciolini, P. Pani, and A. Riotto, The Evolution of Primordial Black Holes and Their Final Observable Spins, J. Cosmol. Astropart. Phys. 04 (2020) 052. JCAPBP 1475-7516 10.1088/1475-7516/2020/04/052
T. Damour, M. Soffel, and C. Xu, General Relativistic Celestial Mechanics. 2. Translational Equations of Motion, Phys. Rev. D 45, 1017 (1992). PRVDAQ 0556-2821 10.1103/PhysRevD.45.1017
É. É. Flanagan and T. Hinderer, Constraining Neutron Star Tidal Love Numbers with Gravitational Wave Detectors, Phys. Rev. D 77, 021502 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.021502
K. Yagi and N. Yunes, Approximate Universal Relations for Neutron Stars and Quark Stars, Phys. Rep. 681, 1 (2017). PRPLCM 0370-1573 10.1016/j.physrep.2017.03.002
A. Le Tiec and M. Casals, Spinning Black Holes Fall in Love, Phys. Rev. Lett. 126, 131102 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.131102
H. S. Chia, Tidal Deformation and Dissipation of Rotating Black Holes, Phys. Rev. D 104, 024013 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.024013
W. D. Goldberger, J. Li, and I. Z. Rothstein, Non-Conservative Effects on Spinning Black Holes from World-Line Effective Field Theory, J. High Energy Phys. 06 (2021) 053. JHEPFG 1029-8479 10.1007/JHEP06(2021)053
P. Charalambous, S. Dubovsky, and M. M. Ivanov, On the Vanishing of Love Numbers for Kerr Black Holes, J. High Energy Phys. 05 (2021) 038. JHEPFG 1029-8479 10.1007/JHEP05(2021)038
P. Kumar, M. Pürrer, and H. P. Pfeiffer, Measuring Neutron Star Tidal Deformability with Advanced LIGO: A Bayesian Analysis of Neutron Star-Black Hole Binary Observations, Phys. Rev. D 95, 044039 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044039
Y. Huang, C.-J. Haster, S. Vitale, V. Varma, F. Foucart, and S. Biscoveanu, Statistical and Systematic Uncertainties in Extracting the Source Properties of Neutron Star-Black Hole Binaries with Gravitational Waves, Phys. Rev. D 103, 083001 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.083001
S. M. Brown, C. D. Capano, and B. Krishnan, Using Gravitational Waves to Distinguish between Neutron Stars and Black Holes in Compact Binary Mergers, Astrophys. J. 941, 98 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac98fe
L. Wen and Y. Chen, Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors, Phys. Rev. D 81, 082001 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.082001
L. P. Singer, The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo, Astrophys. J. 795, 105 (2014). ASJOAB 0004-637X 10.1088/0004-637X/795/2/105
C. Pankow, M. Rizzo, K. Rao, C. P. L. Berry, and V. Kalogera, Localization of Compact Binary Sources with Second Generation Gravitational-Wave Interferometer Networks, Astrophys. J. 902, 71 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abb373
G. Dálya, G. Galgóczi, L. Dobos, Z. Frei, I. S. Heng, R. Macas, C. Messenger, P. Raffai, and R. S. de Souza, GLADE: A Galaxy Catalogue for Multimessenger Searches in the Advanced Gravitational-Wave Detector Era, Mon. Not. R. Astron. Soc. 479, 2374 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1703
G. Dálya, GLADE+: An Extended Galaxy Catalogue for Multimessenger Searches with Advanced Gravitational-Wave Detectors, Mon. Not. R. Astron. Soc. 514, 1403 (2022). MNRAA4 0035-8711 10.1093/mnras/stac1443
W. Del Pozzo, C. P. L. Berry, A. Ghosh, T. S. F. Haines, L. P. Singer, and A. Vecchio, Dirichlet Process Gaussian-Mixture Model: An Application to Localizing Coalescing Binary Neutron Stars with Gravitational-Wave Observations, Mon. Not. R. Astron. Soc. 479, 601 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1485
T. B. Littenberg, J. G. Baker, A. Buonanno, and B. J. Kelly, Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers, Phys. Rev. D 87, 104003 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.104003
V. Varma, P. Ajith, S. Husa, J. Calderon Bustillo, M. Hannam, and M. Pürrer, Gravitational-Wave Observations of Binary Black Holes: Effect of Nonquadrupole Modes, Phys. Rev. D 90, 124004 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.124004
P. Kumar, T. Chu, H. Fong, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi, Accuracy of Binary Black Hole Waveform Models for Aligned-Spin Binaries, Phys. Rev. D 93, 104050 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.104050
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Effects of Waveform Model Systematics on the Interpretation of GW150914, Classical Quantum Gravity 34, 104002 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa6854
M. Pürrer and C.-J. Haster, Gravitational Waveform Accuracy Requirements for Future Ground-Based Detectors, Phys. Rev. Res. 2, 023151 (2020). PPRHAI 2643-1564 10.1103/PhysRevResearch.2.023151
F. H. Shaik, J. Lange, S. E. Field, R. O'Shaughnessy, V. Varma, L. E. Kidder, H. P. Pfeiffer, and D. Wysocki, Impact of Subdominant Modes on the Interpretation of Gravitational-Wave Signals from Heavy Binary Black Hole Systems, Phys. Rev. D 101, 124054 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.124054
A. Ramos-Buades, P. Schmidt, G. Pratten, and S. Husa, Validity of Common Modeling Approximations for Precessing Binary Black Holes with Higher-Order Modes, Phys. Rev. D 101, 103014 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.103014
M. Colleoni, M. Mateu-Lucena, H. Estellés, C. García-Quirós, D. Keitel, G. Pratten, A. Ramos-Buades, and S. Husa, Towards the Routine Use of Subdominant Harmonics in Gravitational-Wave Inference: Reanalysis of GW190412 with Generation X Waveform Models, Phys. Rev. D 103, 024029 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.024029
D. Gerosa, M. Kesden, R. O'Shaughnessy, A. Klein, E. Berti, U. Sperhake, and D. Trifirò, Precessional Instability in Binary Black Holes with Aligned Spins, Phys. Rev. Lett. 115, 141102 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.141102
H. Estellés, M. Colleoni, C. García-Quirós, S. Husa, D. Keitel, M. Mateu-Lucena, M. d. L. Planas, and A. Ramos-Buades, New Twists in Compact Binary Waveform Modeling: A Fast Time-Domain Model for Precession, Phys. Rev. D 105, 084040 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.084040
S. Biscoveanu, M. Isi, V. Varma, and S. Vitale, Measuring the Spins of Heavy Binary Black Holes, Phys. Rev. D 104, 103018 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.103018
N. V. Krishnendu and F. Ohme, Interplay of Spin-Precession and Higher Harmonics in the Parameter Estimation of Binary Black Holes, Phys. Rev. D 105, 064012 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.064012
V. Varma and P. Ajith, Effects of Nonquadrupole Modes in the Detection and Parameter Estimation of Black Hole Binaries with Nonprecessing Spins, Phys. Rev. D 96, 124024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124024
E. Payne, C. Talbot, and E. Thrane, Higher Order Gravitational-Wave Modes with Likelihood Reweighting, Phys. Rev. D 100, 123017 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.123017
C. Mills and S. Fairhurst, Measuring Gravitational-Wave Higher-Order Multipoles, Phys. Rev. D 103, 024042 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.024042
P. Kumar, J. Blackman, S. E. Field, M. Scheel, C. R. Galley, M. Boyle, L. E. Kidder, H. P. Pfeiffer, B. Szilagyi, and S. A. Teukolsky, Constraining the Parameters of GW150914 and GW170104 with Numerical Relativity Surrogates, Phys. Rev. D 99, 124005 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.124005
K. Chatziioannou, On the Properties of the Massive Binary Black Hole Merger GW170729, Phys. Rev. D 100, 104015 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.104015
C. Kalaghatgi, M. Hannam, and V. Raymond, Parameter Estimation with a Spinning Multimode Waveform Model, Phys. Rev. D 101, 103004 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.103004
S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam, Including Higher Order Multipoles in Gravitational-Wave Models for Precessing Binary Black Holes, Phys. Rev. D 101, 024056 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.024056
J. Veitch, Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the lali nference Software Library, Phys. Rev. D 91, 042003 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.042003
N. J. Cornish and T. B. Littenberg, b ayes w ave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs, Astrophys. J. 883, 149 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab3c2d
N. J. Cornish, T. B. Littenberg, B. Bécsy, K. Chatziioannou, J. A. Clark, S. Ghonge, and M. Millhouse, b ayes w ave Analysis Pipeline in the Era of Gravitational Wave Observations, Phys. Rev. D 103, 044006 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.044006
S. Ghonge, K. Chatziioannou, J. A. Clark, T. Littenberg, M. Millhouse, L. Cadonati, and N. Cornish, Reconstructing Gravitational Wave Signals from Binary Black Hole Mergers with Minimal Assumptions, Phys. Rev. D 102, 064056 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.064056
N. K. Johnson-McDaniel, A. Ghosh, S. Ghonge, M. Saleem, N. V. Krishnendu, and J. A. Clark, Investigating the Relation between Gravitational Wave Tests of General Relativity, Phys. Rev. D 105, 044020 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.044020
L. S. Finn, Detection, Measurement and Gravitational Radiation, Phys. Rev. D 46, 5236 (1992). PRVDAQ 0556-2821 10.1103/PhysRevD.46.5236
T. B. Littenberg, J. B. Kanner, N. J. Cornish, and M. Millhouse, Enabling High Confidence Detections of Gravitational-Wave Bursts, Phys. Rev. D 94, 044050 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.044050
B. Bécsy, P. Raffai, N. J. Cornish, R. Essick, J. Kanner, E. Katsavounidis, T. B. Littenberg, M. Millhouse, and S. Vitale, Parameter Estimation for Gravitational-Wave Bursts with the b ayes w ave Pipeline, Astrophys. J. 839, 15 (2017). ASJOAB 0004-637X 10.3847/1538-4357/aa63ef
F. Pannarale, R. Macas, and P. J. Sutton, Bayesian Inference Analysis of Unmodelled Gravitational-Wave Transients, Classical Quantum Gravity 36, 035011 (2019). CQGRDG 0264-9381 10.1088/1361-6382/aaf76d
J. Abadie (LIGO Scientific Collaboration), Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3, Astrophys. J. 760, 12 (2012). ASJOAB 0004-637X 10.1088/0004-637X/760/1/12
A. R. Williamson, J. Lange, R. O'Shaughnessy, J. A. Clark, P. Kumar, J. Calderón Bustillo, and J. Veitch, Systematic Challenges for Future Gravitational Wave Measurements of Precessing Binary Black Holes, Phys. Rev. D 96, 124041 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124041
A. Samajdar and T. Dietrich, Waveform Systematics for Binary Neutron Star Gravitational Wave Signals: Effects of Spin, Precession, and the Observation of Electromagnetic Counterparts, Phys. Rev. D 100, 024046 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.024046
K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D. Shoemaker, Georgia Tech Catalog of Gravitational Waveforms, Classical Quantum Gravity 33, 204001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/20/204001
M. Boyle, The SXS Collaboration Catalog of Binary Black Hole Simulations, Classical Quantum Gravity 36, 195006 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab34e2
J. Healy and C. O. Lousto, Third RIT Binary Black Hole Simulations Catalog, Phys. Rev. D 102, 104018 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.104018
C. O. Lousto and J. Healy, Exploring the Small Mass Ratio Binary Black Hole Merger via Zeno's Dichotomy Approach, Phys. Rev. Lett. 125, 191102 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.191102
M. E. Lower, E. Thrane, P. D. Lasky, and R. Smith, Measuring Eccentricity in Binary Black Hole Inspirals with Gravitational Waves, Phys. Rev. D 98, 083028 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.083028
B. Moore and N. Yunes, Data Analysis Implications of Moderately Eccentric Gravitational Waves, Classical Quantum Gravity 37, 225015 (2020). CQGRDG 0264-9381 10.1088/1361-6382/ab7963
I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Searching for Eccentricity: Signatures of Dynamical Formation in the First Gravitational-Wave Transient Catalogue of LIGO and Virgo, Mon. Not. R. Astron. Soc. 490, 5210 (2019). MNRAA4 0035-8711 10.1093/mnras/stz2996
A. K. Lenon, A. H. Nitz, and D. A. Brown, Measuring the Eccentricity of GW170817 and GW190425, Mon. Not. R. Astron. Soc. 497, 1966 (2020). MNRAA4 0035-8711 10.1093/mnras/staa2120
E. O'Shea and P. Kumar, Correlations in Parameter Estimation of Low-Mass Eccentric Binaries: GW151226 & GW170608, arXiv:2107.07981.
M. Favata, C. Kim, K. G. Arun, J. Kim, and H. W. Lee, Constraining the Orbital Eccentricity of Inspiralling Compact Binary Systems with Advanced LIGO, Phys. Rev. D 105, 023003 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.105.023003
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, The O3b Data Release (2021), 10.7935/pr1e-j706.
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Open Data from the Third Observing Run of LIGO, Virgo, KAGRA and GEO, Astrophys. J. Suppl. Ser. 267, 29 (2023). ASJOAB 0004-637X 10.3847/1538-4365/acdc9f
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Open Data from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, SoftwareX 13, 100658 (2021). 2352-7110 10.1016/j.softx.2021.100658
A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and B. Krishnan, 1-OGC: The First Open Gravitational-Wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data, Astrophys. J. 872, 195 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab0108
R. Magee, Sub-Threshold Binary Neutron Star Search in Advanced LIGO's First Observing Run, Astrophys. J. Lett. 878, L17 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab20cf
K. Chandra, J. Calderón Bustillo, A. Pai, and I. W. Harry, First Gravitational-Wave Search for Intermediate-Mass Black Hole Mergers with Higher-Order Harmonics, Phys. Rev. D 106, 123003 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.123003
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), First Joint Observation by the Underground Gravitational-Wave Detector KAGRA with GEO 600, Prog. Theor. Exp. Phys. 2022, 063F01 (2022). PTEPCR 2050-3911 10.1093/ptep/ptac073
B. S. Sathyaprakash and B. F. Schutz, Physics, Astrophysics and Cosmology with Gravitational Waves, Living Rev. Relativity 12, 2 (2009). 1433-8351 10.12942/lrr-2009-2
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Optically Targeted Search for Gravitational Waves Emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, Phys. Rev. D 101, 084002 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.084002
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), All-Sky Search in Early O3 LIGO Data for Continuous Gravitational-Wave Signals from Unknown Neutron Stars in Binary Systems, Phys. Rev. D 103, 064017 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.064017
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Constraints from LIGO O3 Data on Gravitational-Wave Emission Due to (Equation presented)-Modes in the Glitching Pulsar PSR J0537-6910, Astrophys. J. 922, 71 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac0d52
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo, Astrophys. J. 921, 80 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac17ea
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Narrowband Searches for Continuous and Long-Duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run, Astrophys. J. 932, 133 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac6ad0
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), All-Sky Search for Continuous Gravitational Waves from Isolated Neutron Stars Using Advanced LIGO and Advanced Virgo O3 Data, Phys. Rev. D 106, 102008 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.102008
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Gravitational Waves from Scorpius X-1 with a Hidden Markov Model in O3 LIGO Data, Phys. Rev. D 106, 062002 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.062002
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO and Advanced Virgo's Third Observing Run, Phys. Rev. D 104, 022004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.022004
R. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Search for Anisotropic Gravitational-Wave Backgrounds Using Data from Advanced LIGO and Advanced Virgo's First Three Observing Runs, Phys. Rev. D 104, 022005 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.022005
John Zweizig, The Data Monitor Tool Project (2006), https://labcit.ligo.caltech.edu/~jzweizig/DMT-Project.html.
R. P. Fisher, G. Hemming, M.-A. Bizouard, D. A. Brown, P. F. Couvares, F. Robinet, and D. Verkindt, DQSEGDB: A Time-Interval Database for Storing Gravitational Wave Observatory Metadata, SoftwareX 14, 100677 (2021). 2352-7110 10.1016/j.softx.2021.100677
A. L. Urban, gwdetchar/gwdetchar (2021), 10.5281/zenodo.2575786.
J. R. Smith, T. Abbott, E. Hirose, N. Leroy, D. Macleod, J. McIver, P. Saulson, and P. Shawhan, A Hierarchical Method for Vetoing Noise Transients in Gravitational-Wave Detectors, Classical Quantum Gravity 28, 235005 (2011). CQGRDG 0264-9381 10.1088/0264-9381/28/23/235005
R. Essick, P. Godwin, C. Hanna, L. Blackburn, and E. Katsavounidis, i dq: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in Gravitational-Wave Detectors, Mach. Learn. Sci. Technol. 2, 015004 (2020). 10.1088/2632-2153/abab5f
Virgo Collaboration, p ython v irgotools, https://git.ligo.org/virgo/virgoapp/PythonVirgoTools (2021).
J. S. Speagle, d ynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences, Mon. Not. R. Astron. Soc. 493, 3132 (2020). MNRAA4 0035-8711 10.1093/mnras/staa278
C. Hoy and V. Raymond, pes ummary: The Code Agnostic Parameter Estimation Summary Page Builder, SoftwareX 15, 100765 (2021). 2352-7110 10.1016/j.softx.2021.100765
D. Williams, J. Veitch, M. L. Chiofalo, P. Schmidt, R. P. Udall, A. Vajpeji, and C. Hoy, a simov: A Framework for Coordinating Parameter Estimation Workflows, J. Open Source Softwaare 8, 4170 (2023). 2475-9066 10.21105/joss.04170
J. D. Hunter, matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9, 90 (2007). CSENFA 1521-9615 10.1109/MCSE.2007.55
M. L. Waskom, seaborn: Statistical Data Visualization, J. Open Source Softwaare 6, 3021 (2021). 2475-9066 10.21105/joss.03021
D. Macleod, gwpy/gwpy (2021), 10.5281/zenodo.597016.
C. R. Harris, Array Programming with n um p y, Nature (London) 585, 357 (2020). NATUAS 0028-0836 10.1038/s41586-020-2649-2
P. Virtanen, s ci p y 1.0-Fundamental Algorithms for Scientific Computing in python, Nat. Methods 17, 261 (2020). NMAEA3 1548-7091 10.1038/s41592-019-0686-2
D. Chatterjee, S. Ghosh, P. R. Brady, S. J. Kapadia, A. L. Miller, S. Nissanke, and F. Pannarale, A Machine Learning Based Source Property Inference for Compact Binary Mergers, Astrophys. J. 896, 54 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab8dbe
R. Magee, First Demonstration of Early Warning Gravitational Wave Alerts, Astrophys. J. Lett. 910, L21 (2021). AJLEEY 2041-8213 10.3847/2041-8213/abed54
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Low-Latency Gravitational-Wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run, Astrophys. J. 875, 161 (2019). ASJOAB 0004-637X 10.3847/1538-4357/ab0e8f
S. Antier, GRANDMA Observations of Advanced LIGO's and Advanced Virgo's Third Observational Campaign, Mon. Not. R. Astron. Soc. 497, 5518 (2020). MNRAA4 0035-8711 10.1093/mnras/staa1846
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24069, 2019, https://gcn.gsfc.nasa.gov/other/S190408an.gcn3.
R. Abbasi (IceCube Collaboration), Probing Neutrino Emission at GeV Energies from Compact Binary Mergers with the IceCube Neutrino Observatory, arXiv:2105.13160.
R. Abbasi (IceCube Collaboration), IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O3, Astrophys. J. 944, 80 (2023). ASJOAB 0004-637X 10.3847/1538-4357/aca5fc
R. Abbasi (IceCube Collaboration), A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-Wave Events Detected By LIGO/Virgo, arXiv:2303.15970.
S. Abe (KamLAND Collaboration), Search for Low-Energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events, Astrophys. J. 909, 116 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abd5bc
K. Abe (Super-Kamiokande Collaboration), Search for Neutrinos in Coincidence with Gravitational Wave Events from the LIGO-Virgo O3a Observing Run with the Super-Kamiokande Detector, Astrophys. J. 918, 78 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac0d5a
M. A. Acero (NOvA Collaboration), Search for Multimessenger Signals in NOvA Coincident with LIGO/Virgo Detections, Phys. Rev. D 101, 112006 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.101.112006
O. Adriani, CALET Search for Electromagnetic Counterparts of Gravitational Waves during the LIGO/Virgo O3 Run, Astrophys. J. 933, 85 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac6f53
S. Antier, The First Six Months of the Advanced LIGO's and Advanced Virgo's Third Observing Run with GRANDMA, Mon. Not. R. Astron. Soc. 492, 3904 (2020). MNRAA4 0035-8711 10.1093/mnras/stz3142
R. L. Becerra, DDOTI Observations of Gravitational-Wave Sources Discovered in O3, Mon. Not. R. Astron. Soc. 507, 1401 (2021). MNRAA4 0035-8711 10.1093/mnras/stab2086
C. Cai, Search for Gamma-Ray Bursts and Gravitational Wave Electromagnetic Counterparts with High Energy X-Ray Telescope of Insight-HXMT, Mon. Not. R. Astron. Soc. 508, 3910 (2021). MNRAA4 0035-8711 10.1093/mnras/stab2760
B. P. Gompertz, Searching for Electromagnetic Counterparts to Gravitational-wave Merger Events with the Prototype Gravitational-Wave Optical Transient Observer (GOTO-4), Mon. Not. R. Astron. Soc. 497, 726 (2020). MNRAA4 0035-8711 10.1093/mnras/staa1845
M. J. Graham, A Light in the Dark: Searching for Electromagnetic Counterparts to Black Hole-Black Hole Mergers in LIGO/Virgo O3 with the Zwicky Transient Facility, Astrophys. J. 942, 99 (2023). ASJOAB 0004-637X 10.3847/1538-4357/aca480
R. Hussain, J. Vandenbroucke, and J. Wood (IceCube Collaboration), A Search for IceCube Neutrinos from the First 33 Detected Gravitational Wave Events, Proc. Sci., ICRC2019 (2020) 918 [arXiv:1908.07706]. 1824-8039 10.22323/1.358.0918
J. Kim, GECKO Optical Follow-Up Observation of Three Binary Black Hole Merger Events: GW190408_181802, GW190412, and GW190503_185404, Astrophys. J. 916, 47 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac0446
V. Lipunov, Strategy and Results of MASTER Network Follow-Up Observations of LIGO and Virgo Gravitational Wave Events within the Observational Sets O1, O2, and O3, Astron. Rep. 66, 1118 (2022). ATROES 1063-7729 10.1134/S1063772922110129
M. J. Lundquist, Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run, Astrophys. J. Lett. 881, L26 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab32f2
G. Mo, R. Jayaraman, M. Fausnaugh, E. Katsavounidis, G. R. Ricker, and R. Vanderspek, Searching for Gravitational-Wave Counterparts Using the Transiting Exoplanet Survey Satellite, Astrophys. J. Lett. 948, L3 (2023). AJLEEY 2041-8213 10.3847/2041-8213/acca70
K. Paterson, Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): Observations and Analysis from Advanced LIGO/Virgo's Third Observing Run, Astrophys. J. 912, 128 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abeb71
A. Ridnaia, D. Svinkin, and D. Frederiks, A Search for Gamma-Ray Counterparts to Gravitational Wave Events in Konus-(Equation presented) Data, J. Phys. Conf. Ser. 1697, 012030 (2020). JPCSDZ 1742-6588 10.1088/1742-6596/1697/1/012030
M. Sasada (J-GEM Collaboration), J-GEM Optical and Near-Infrared Follow-Up of Gravitational Wave Events during LIGO's and Virgo's Third Observing Run, Prog. Theor. Exp. Phys. 2021, 05A104 (2021). PTEPCR 2050-3911 10.1093/ptep/ptab007
I. B. Unatlokov, I. M. Dzaparova, M. G. Kostyuk, M. M. Kochkarov, A. N. Kurenya, Y. F. Novoseltsev, R. V. Novoseltseva, V. B. Petkov, P. S. Striganov, and A. F. Yanin, Search for Neutrino Counterparts of LIGO/Virgo Gravitational-Wave Events, J. Phys. Conf. Ser. 2156, 012142 (2021). JPCSDZ 1742-6588 10.1088/1742-6596/2156/1/012142
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24098, 2019, https://gcn.gsfc.nasa.gov/other/S190412m.gcn3.
A. Albert (ANTARES Collaboration), Search for Neutrino Counterparts to the Gravitational Wave Sources from LIGO/Virgo O3 Run with the ANTARES Detector, J. Cosmol. Astropart. Phys. 04 (2023) 004. JCAPBP 1475-7516 10.1088/1475-7516/2023/04/004
S. R. Oates, Swift/UVOT Follow-Up of Gravitational Wave Alerts in the O3 Era, Mon. Not. R. Astron. Soc. 507, 1296 (2021). MNRAA4 0035-8711 10.1093/mnras/stab2189
K. L. Page, Swift-XRT Follow-Up of Gravitational Wave Triggers during the Third aLIGO/Virgo Observing Run, Mon. Not. R. Astron. Soc. 499, 3459 (2020). MNRAA4 0035-8711 10.1093/mnras/staa3032
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24141, 2019, https://gcn.gsfc.nasa.gov/other/S190421ar.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24168, 2019, https://gcn.gsfc.nasa.gov/other/S190425z.gcn3.
O. M. Boersma, A Search for Radio Emission from Double-Neutron Star Merger GW190425 Using Apertif, Astron. Astrophys. 650, A131 (2021). AAEJAF 0004-6361 10.1051/0004-6361/202140578
D. Basilico (Borexino Collaboration), Borexino's Search for Low-Energy Neutrinos Associated with Gravitational Wave Events from GWTC-3 Database, Eur. Phys. J. C 83, 538 (2023). EPCFFB 1434-6044 10.1140/epjc/s10052-023-11688-4
S.-W. Chang, C. A. Onken, C. Wolf, L. Luvaul, A. Möller, R. Scalzo, B. P. Schmidt, S. M. Scott, N. Sura, and F. Yuan, SkyMapper Optical Follow-Up of Gravitational Wave Triggers: Alert Science Data Pipeline and LIGO/Virgo O3 Run, Pub. Astron. Soc. Aust. 38, e024 (2021). PASAFO 1323-3580 10.1017/pasa.2021.17
M. W. Coughlin, Implications of the Search for Optical Counterparts during the Second Part of the Advanced LIGO's and Advanced Virgo's Third Observing Run: Lessons Learned for Future Follow-Up Observations, Mon. Not. R. Astron. Soc. 497, 1181 (2020). MNRAA4 0035-8711 10.1093/mnras/staa1925
T. de Jaeger, B. J. Shappee, C. S. Kochanek, K. Z. Stanek, J. F. Beacom, T. W.-S. Holoien, T. A. Thompson, A. Franckowiak, and S. Holmbo, ASAS-SN Search for Optical Counterparts of Gravitational-Wave Events from the Third Observing Run of Advanced LIGO/Virgo, Mon. Not. R. Astron. Soc. 509, 3427 (2022). MNRAA4 0035-8711 10.1093/mnras/stab3141
G. Hosseinzadeh, Follow-Up of the Neutron Star Bearing Gravitational Wave Candidate Events S190425z and S190426c with MMT and SOAR, Astrophys. J. Lett. 880, L4 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab271c
M. M. Kasliwal, Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3, Astrophys. J. 905, 145 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abc335
F. H. Panther, The Most Probable Host of CHIME FRB 190425A, Associated with Binary Neutron Star Merger GW190425, and a Late-Time Transient Search, Mon. Not. R. Astron. Soc. 519, 2235 (2023). MNRAA4 0035-8711 10.1093/mnras/stac3597
A. S. Pozanenko, P. Yu. Minaev, S. A. Grebenev, and I. V. Chelovekov, Observation of the Second LIGO/Virgo Event Connected with a Binary Neutron Star Merger S190425z in the Gamma-Ray Range, Astron. Lett. 45, 710 (2020). ALETEO 1063-7737 10.1134/S1063773719110057
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24237, 2019, https://gcn.gsfc.nasa.gov/other/S190426c.gcn3.
S. Anand, DECam-GROWTH Search for the Faint and Distant Binary Neutron Star and Neutron Star-Black Hole Mergers in O3a, Rev. Mex. Astron. Astrofis. 53, 91 (2021). RMAAD4 0185-1101 10.22201/ia.14052059p.2021.53.20
D. A. Goldstein, GROWTH on S190426c: Real-Time Search for a Counterpart to the Probable Neutron Star-Black Hole Merger Using an Automated Difference Imaging Pipeline for DECam, Astrophys. J. Lett. 881, L7 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab3046
K. Gourdji, A. Rowlinson, R. Wijers, J. Broderick, and A. Shulevski, LOFAR Observations of Gravitational Wave Merger Events: O3 Results and O4 Strategy, Mon. Not. R. Astron. Soc. 523, 4748 (2023). MNRAA4 0035-8711 10.1093/mnras/stad1714
H. Kumar, GROWTH on S190426c II: GROWTH-India Telescope Search for an Optical Counterpart with a Custom Image Reduction and Candidate Vetting Pipeline, Mon. Not. R. Astron. Soc. 516, 4517 (2022). MNRAA4 0035-8711 10.1093/mnras/stac2516
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24377, 2019, https://gcn.gsfc.nasa.gov/other/S190503bf.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24442, 2019, https://gcn.gsfc.nasa.gov/other/S190510g.gcn3.
I. Andreoni, GROWTH on S190510g: DECam Observation Planning and Follow-Up of a Distant Binary Neutron Star Merger Candidate, Astrophys. J. Lett. 881, L16 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab3399
A. Garcia (DES Collaboration), A DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational Wave Binary Neutron Star Merger Candidate S190510g, Astrophys. J. 903, 75 (2020). ASJOAB 0004-637X 10.3847/1538-4357/abb823
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24503, 2019, https://gcn.gsfc.nasa.gov/other/S190512at.gcn3.
H. Abdalla (H.E.S.S. Collaboration), H.E.S.S. Follow-Up Observations of Binary Black Hole Coalescence Events during the Second and Third Gravitational-Wave Observing Runs of Advanced LIGO and Advanced Virgo, Astrophys. J. 923, 109 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac2e04
H. Ashkar, F. Brun, M. Füßling, C. Hoischen, S. Ohm, H. Prokoph, P. Reichherzer, F. Schüssler, and M. Seglar-Arroyo, The H.E.S.S. Gravitational Wave Rapid Follow-Up Program, J. Cosmol. Astropart. Phys. 03 (2021) 045. JCAPBP 1475-7516 10.1088/1475-7516/2021/03/045
T. Ohgami, Optical Follow-Up Observation for GW Event S190510g Using Subaru/Hyper Suprime-Cam, Publ. Astron. Soc. Jpn. 73, 350 (2021). PASJAC 0004-6264 10.1093/pasj/psab002
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24522, 2019, https://gcn.gsfc.nasa.gov/other/S190513bm.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24570, 2019, https://gcn.gsfc.nasa.gov/other/S190517h.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24591, 2019, https://gcn.gsfc.nasa.gov/other/S190518bb.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24598, 2019, https://gcn.gsfc.nasa.gov/other/S190519bj.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24621, 2019, https://gcn.gsfc.nasa.gov/other/S190521g.gcn3.
M. J. Graham, Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational Wave Event S190521g, Phys. Rev. Lett. 124, 251102 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.251102
E. Podlesnyi and T. Dzhatdoev, Search for High Energy (Equation presented)-Rays from the Direction of the Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g, Results Phys. 19, 103579 (2020). RPEHBU 2211-3797 10.1016/j.rinp.2020.103579
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24632, 2019, https://gcn.gsfc.nasa.gov/other/S190521r.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24656, 2019, https://gcn.gsfc.nasa.gov/other/S190524q.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24717, 2019, https://gcn.gsfc.nasa.gov/other/S190602aq.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24922, 2019, https://gcn.gsfc.nasa.gov/other/S190630ag.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24950, 2019, https://gcn.gsfc.nasa.gov/other/S190701ah.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 24998, 2019, https://gcn.gsfc.nasa.gov/other/S190706ai.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25012, 2019, https://gcn.gsfc.nasa.gov/other/S190707q.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25087, 2019, https://gcn.gsfc.nasa.gov/other/S190718y.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25115, 2019, https://gcn.gsfc.nasa.gov/other/S190720a.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25164, 2019, https://gcn.gsfc.nasa.gov/other/S190727h.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25187, 2019, https://gcn.gsfc.nasa.gov/other/S190728q.gcn3.
A. Keivani, Swift Follow-up Observations of Gravitational-Wave and High-energy Neutrino Coincident Signals, Astrophys. J. 909, 126 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abdab4
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25296, 2019, https://gcn.gsfc.nasa.gov/other/S190808ae.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25324, 2019, https://gcn.gsfc.nasa.gov/other/S190814bv.gcn3.
K. Ackley, Observational Constraints on the Optical and Near-Infrared Emission from the Neutron Star-Black Hole Binary Merger Candidate S190814bv, Astron. Astrophys. 643, A113 (2020). AAEJAF 0004-6361 10.1051/0004-6361/202037669
K. D. Alexander, A Late-Time Galaxy-Targeted Search for the Radio Counterpart of GW190814, Astrophys. J. 923, 66 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac281a
I. Andreoni, GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-Infrared Counterpart to a Neutron Star-Black Hole Merger, Astrophys. J. 890, 131 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab6a1b
M. W. Coughlin, GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini IR, Astrophys. J. Lett. 885, L19 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab4ad8
S. de Wet, GW190814 Follow-Up with the Optical Telescope MeerLICHT, Astron. Astrophys. 649, A72 (2021). AAEJAF 0004-6361 10.1051/0004-6361/202040231
D. Dobie, An ASKAP Search for a Radio Counterpart to the First High-Significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv, Astrophys. J. Lett. 887, L13 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab59db
S. Gomez, A Galaxy-Targeted Search for the Optical Counterpart of the Candidate NS-BH Merger S190814bv with Magellan, Astrophys. J. Lett. 884, L55 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab4ad5
C. D. Kilpatrick, The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814, Astrophys. J. 923, 258 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac23c6
A. L. Thakur, A Search for Optical and Near-Infrared Counterparts of the Compact Binary Merger GW190814, Mon. Not. R. Astron. Soc. 499, 3868 (2020); MNRAA4 0035-8711 10.1093/mnras/staa2798
A. L. Thakur Mon. Not. R. Astron. Soc. 501, 2821(E) (2021). MNRAA4 0035-8711 10.1093/mnras/staa3872
D. Tucker (DES Collaboration), SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814∗, Astrophys. J. 929, 115 (2022). ASJOAB 0004-637X 10.3847/1538-4357/ac5b60
N. Vieira, A Deep CFHT Optical Search for a Counterpart to the Possible Neutron Star-Black Hole Merger GW190814, Astrophys. J. 895, 96 (2020). ASJOAB 0004-637X 10.3847/1538-4357/ab917d
A. M. Watson, Limits on the Electromagnetic Counterpart to S190814bv, Mon. Not. R. Astron. Soc. 492, 5916 (2020). MNRAA4 0035-8711 10.1093/mnras/staa161
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25367, 2019, https://gcn.gsfc.nasa.gov/gcn/gcn3/25367.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25442, 2019, https://gcn.gsfc.nasa.gov/other/S190822c.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25497, 2019, https://gcn.gsfc.nasa.gov/other/S190828j.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25503, 2019, https://gcn.gsfc.nasa.gov/other/S190828l.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25554, 2019, https://gcn.gsfc.nasa.gov/other/S190829u.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25606, 2019, https://gcn.gsfc.nasa.gov/other/S190901ap.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25695, 2019, https://gcn.gsfc.nasa.gov/other/S190910d.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25707, 2019, https://gcn.gsfc.nasa.gov/other/S190910h.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25753, 2019, https://gcn.gsfc.nasa.gov/other/S190915ak.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25814, 2019, https://gcn.gsfc.nasa.gov/other/S190923y.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25829, 2019, https://gcn.gsfc.nasa.gov/other/S190924h.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25883, 2019, https://gcn.gsfc.nasa.gov/other/S190928c.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25871, 2019, https://gcn.gsfc.nasa.gov/other/S190930s.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 25876, 2019, https://gcn.gsfc.nasa.gov/other/S190930t.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26182, 2019, https://gcn.gsfc.nasa.gov/other/S191105e.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26202, 2019, https://gcn.gsfc.nasa.gov/other/S191109d.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26222, 2019, https://gcn.gsfc.nasa.gov/other/S191110af.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26218, 2019, https://gcn.gsfc.nasa.gov/other/S191110x.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26254, 2019, https://gcn.gsfc.nasa.gov/other/S191117j.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26263, 2019, https://gcn.gsfc.nasa.gov/other/S191120aj.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26265, 2019, https://gcn.gsfc.nasa.gov/other/S191120at.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26288, 2019, https://gcn.gsfc.nasa.gov/other/S191124be.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26303, 2019, https://gcn.gsfc.nasa.gov/other/S191129u.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26334, 2019, https://gcn.gsfc.nasa.gov/other/S191204r.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26350, 2019, https://gcn.gsfc.nasa.gov/other/S191205ah.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26395, 2019, https://gcn.gsfc.nasa.gov/other/S191212q.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26402, 2019, https://gcn.gsfc.nasa.gov/other/S191213g.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26413, 2019, https://gcn.gsfc.nasa.gov/other/S191213ai.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26441, 2019, https://gcn.gsfc.nasa.gov/other/S191215w.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26454, 2019, https://gcn.gsfc.nasa.gov/other/S191216ap.gcn3.
D. Bhakta, K. P. Mooley, A. Corsi, A. Balasubramanian, D. Dobie, D. A. Frail, G. Hallinan, D. L. Kaplan, S. T. Myers, and L. P. Singer, The JAGWAR Prowls LIGO/Virgo O3 Paper I: Radio Search of a Possible Multimessenger Counterpart of the Binary Black Hole Merger Candidate S191216ap, Astrophys. J. 911, 77 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abeaa8
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26513, 2019, https://gcn.gsfc.nasa.gov/other/S191220af.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26543, 2019, https://gcn.gsfc.nasa.gov/other/S191222n.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26585, 2019, https://gcn.gsfc.nasa.gov/other/S191225aq.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26640, 2020, https://gcn.gsfc.nasa.gov/other/S200105ae.gcn3.
S. Anand, Optical Follow-Up of the Neutron Star-Black Hole Mergers S200105ae and S200115j, Nat. Astron. 5, 46 (2021). 2397-3366 10.1038/s41550-020-1183-3
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26641, 2020, https://gcn.gsfc.nasa.gov/other/S200106au.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26665, 2020, https://gcn.gsfc.nasa.gov/other/S200108v.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26715, 2020, https://gcn.gsfc.nasa.gov/other/S200112r.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26734, 2020, https://gcn.gsfc.nasa.gov/other/S200114f.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26759, 2020, https://gcn.gsfc.nasa.gov/other/S200115j.gcn3.
S. Dichiara, Constraints on the Electromagnetic Counterpart of the Neutron-Star-Black-Hole Merger GW200115, Astrophys. J. Lett. 923, L32 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac4259
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26785, 2020, https://gcn.gsfc.nasa.gov/other/S200116ah.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26906, 2020, https://gcn.gsfc.nasa.gov/other/S200128d.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 26926, 2020, https://gcn.gsfc.nasa.gov/other/S200129m.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27014, 2020, https://gcn.gsfc.nasa.gov/other/S200208q.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27042, 2020, https://gcn.gsfc.nasa.gov/other/S200213t.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27130, 2020, https://gcn.gsfc.nasa.gov/other/S200219ac.gcn3.
V. Lipunov, Optical Transients Found by MASTER during the Observation of LIGO/VIRGO S200219ac Gravitational-Wave Event, Res. Notes AAS 4, 194 (2020). 10.3847/2515-5172/abc6ad
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27184, 2020, https://gcn.gsfc.nasa.gov/other/S200224ca.gcn3.
N. J. Klingler, Swift Multiwavelength Follow-Up of LVC S200224ca and the Implications for Binary Black Hole Mergers, Astrophys. J. 907, 97 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abd2c3
V. Lipunov, MASTER Optical Observation of LIGO/VIRGO S200224ca Error-Box, Res. Notes AAS 4, 225 (2020). 10.3847/2515-5172/abcf4c
T. Ohgami (J-GEM Collaboration), Follow-Up Survey for the Binary Black Hole Merger GW200224_222234 Using Subaru/HSC and GTC/OSIRIS, Astrophys. J. 947, 9 (2023). ASJOAB 0004-637X 10.3847/1538-4357/acbd42
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27193, 2020, https://gcn.gsfc.nasa.gov/other/S200225q.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27278, 2020, https://gcn.gsfc.nasa.gov/other/S200302c.gcn3.
V. Lipunov, MASTER Optical Observation of LIGO/VIRGO S200302c Event, Res. Notes AAS 4, 230 (2020). 10.3847/2515-5172/abd188
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27306, 2020, https://gcn.gsfc.nasa.gov/other/S200303ba.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27347, 2020, https://gcn.gsfc.nasa.gov/other/S200308e.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27358, 2020, https://gcn.gsfc.nasa.gov/other/S200311bg.gcn3.
LIGO Scientific Collaboration and Virgo Collaboration, GCN 27388, 2020, https://gcn.gsfc.nasa.gov/other/S200316bj.gcn3.
M. Amiri (CHIME/FRB Collaboration), The First CHIME/FRB Fast Radio Burst Catalog, Astrophys. J. Suppl. Ser. 257, 59 (2021). APJSA2 1538-4365 10.3847/1538-4365/ac33ab
A. Moroianu, L. Wen, C. W. James, S. Ai, M. Kovalam, F. H. Panther, and B. Zhang, An Assessment of the Association between a Fast Radio Burst and Binary Neutron Star Merger, Nat. Astron. 7, 579 (2023). 10.1038/s41550-023-01917-x
R. Perna, D. Lazzati, and B. Giacomazzo, Short Gamma-Ray Bursts from the Merger of Two Black Holes, Astrophys. J. Lett. 821, L18 (2016). AJLEEY 2041-8213 10.3847/2041-8205/821/1/L18
N. C. Stone, B. D. Metzger, and Z. Haiman, Assisted Inspirals of Stellar Mass Black Holes Embedded in AGN Discs: Solving the 'Final au Problem' Mon. Not. R. Astron. Soc. 464, 946 (2017). MNRAA4 0035-8711 10.1093/mnras/stw2260
K. Murase, K. Kashiyama, P. Mészáros, I. Shoemaker, and N. Senno, Ultrafast Outflows from Black Hole Mergers with a Minidisk, Astrophys. J. Lett. 822, L9 (2016). AJLEEY 2041-8213 10.3847/2041-8205/822/1/L9
S. E. de Mink and A. King, Electromagnetic Signals Following Stellar-Mass Black Hole Mergers, Astrophys. J. Lett. 839, L7 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa67f3
B. McKernan, K. E. S. Ford, I. Bartos, M. J. Graham, W. Lyra, S. Marka, Z. Marka, N. P. Ross, D. Stern, and Y. Yang, Ram-Pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from the Merger of Stellar Mass Black Holes in an AGN Accretion Disk, Astrophys. J. Lett. 884, L50 (2019). AJLEEY 2041-8213 10.3847/2041-8213/ab4886
T. Bogdanovic, M. C. Miller, and L. Blecha, Electromagnetic Counterparts to Massive Black-Hole Mergers, Living Rev. Relativity 25, 3 (2022). 1433-8351 10.1007/s41114-022-00037-8
V. B. Petkov, I. M. Dzaparova, M. M. Kochkarov, M. G. Kostyuk, A. N. Kurenya, Y. F. Novoseltsev, R. V. Novoseltseva, P. S. Striganov, I. B. Unatlokov, and A. F. Yanin, Searching for Muon Neutrinos from Regions of the Localization of Gravitational-Wave Events, Bull. Russ. Acad. Sci. Phys. 85, 444 (2021). BRSPEX 1062-8738 10.3103/S1062873821040274
R. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a, Astrophys. J. 915, 86 (2021). ASJOAB 0004-637X 10.3847/1538-4357/abee15
M. W. Coughlin, T. Dietrich, S. Antier, M. Bulla, F. Foucart, K. Hotokezaka, G. Raaijmakers, T. Hinderer, and S. Nissanke, Implications of the Search for Optical Counterparts during the First Six Months of the Advanced LIGO's and Advanced Virgo's Third Observing Run: Possible Limits on the Ejecta Mass and Binary Properties, Mon. Not. R. Astron. Soc. 492, 863 (2020). MNRAA4 0035-8711 10.1093/mnras/stz3457
A. Sagués Carracedo, M. Bulla, U. Feindt, and A. Goobar, Detectability of Kilonovae in Optical Surveys: Post-Mortem Examination of the LVC O3 Run Follow-Up, Mon. Not. R. Astron. Soc. 504, 1294 (2021). MNRAA4 0035-8711 10.1093/mnras/stab872
M. W. Coughlin, T. Dietrich, B. Margalit, and B. D. Metzger, Multimessenger Bayesian Parameter Inference of a Binary Neutron Star Merger, Mon. Not. R. Astron. Soc. 489, L91 (2019). MNRAA4 0035-8711 10.1093/mnrasl/slz133
T. Dietrich, M. W. Coughlin, P. T. H. Pang, M. Bulla, J. Heinzel, L. Issa, I. Tews, and S. Antier, Multimessenger Constraints on the Neutron-Star Equation of State and the Hubble Constant, Science 370, 1450 (2020). SCIEAS 0036-8075 10.1126/science.abb4317
M. W. Coughlin, Lessons from Counterpart Searches in LIGO and Virgo's Third Observing Campaign, Nat. Astron. 4, 550 (2020). 2397-3366 10.1038/s41550-020-1130-3
M. Nicholl, B. Margalit, P. Schmidt, G. P. Smith, E. J. Ridley, and J. Nuttall, Tight Multimessenger Constraints on the Neutron Star Equation of State from GW170817 and a Forward Model for Kilonova Light-Curve Synthesis, Mon. Not. R. Astron. Soc. 505, 3016 (2021). MNRAA4 0035-8711 10.1093/mnras/stab1523
G. Raaijmakers, The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova: A Case Study on GW190425, Astrophys. J. 922, 269 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac222d
G. Ashton, K. Ackley, I. Magaña Hernandez, and B. Piotrzkowski, Current Observations Are Insufficient to Confidently Associate the Binary Black Hole Merger GW190521 with AGN J124942.3+344929, Classical Quantum Gravity 38, 235004 (2021). CQGRDG 0264-9381 10.1088/1361-6382/ac33bb
A. Palmese, M. Fishbach, C. J. Burke, J. T. Annis, and X. Liu, Do LIGO/Virgo Black Hole Mergers Produce AGN Flares The Case of GW190521 and Prospects for Reaching a Confident Association, Astrophys. J. Lett. 914, L34 (2021). AJLEEY 2041-8213 10.3847/2041-8213/ac0883
F. De Paolis, A. A. Nucita, F. Strafella, D. Licchelli, and G. Ingrosso, A Quasar Microlensing Event towards J1249+3449, Mon. Not. R. Astron. Soc. 499, L87 (2020). MNRAA4 0035-8711 10.1093/mnrasl/slaa140
A. F. Brooks (LIGO Instrument Science Collaboration), Point Absorbers in Advanced LIGO, Appl. Opt. 60, 4047 (2021). APOPAI 0003-6935 10.1364/AO.419689
B. J. Meers, Recycling in Laser Interferometric Gravitational Wave Detectors, Phys. Rev. D 38, 2317 (1988). PRVDAQ 0556-2821 10.1103/PhysRevD.38.2317
M. Tse, Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy, Phys. Rev. Lett. 123, 231107 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.231107
F. Acernese (Virgo Collaboration), Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light, Phys. Rev. Lett. 123, 231108 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.231108
A. F. Brooks, Direct Measurement of Absorption-Induced Wavefront Distortion in High Optical Power Systems, Appl. Opt. 48, 355 (2009). APOPAI 0003-6935 10.1364/AO.48.000355
A. F. Brooks, Overview of Advanced LIGO Adaptive Optics, Appl. Opt. 55, 8256 (2016). APOPAI 0003-6935 10.1364/AO.55.008256
A. Brooks, aLIGO LLO Logbook, Report No. 49535, 2019, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=49535.
A. Brooks, aLIGO LLO Logbook, Report No. 49564, 2019, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=49564.
L. McCuller, LIGO's Quantum Response to Squeezed States, Phys. Rev. D 104, 062006 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.062006
F. Acernese (Virgo Collaboration), Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector, Phys. Rev. Lett. 125, 131101 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.131101
J. Brooks, M. Mantovani, A. Allocca, J. Casanueva Diaz, V. Dattilo, A. Masserot, and P. Ruggi, Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry-Perot Cavities, Galaxies 8, 80 (2020). 2075-4434 10.3390/galaxies8040080
P. Godwin, Incorporation of Statistical Data Quality Information into the g st lal Search Analysis, arXiv:2010.15282.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run, Classical Quantum Gravity 35, 065010 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaaafa
T. Dal Canton, A. H. Nitz, B. Gadre, G. S. Cabourn Davies, V. Villa-Ortega, T. Dent, I. Harry, and L. Xiao, Real-Time Search for Compact Binary Mergers in Advanced LIGO and Virgo's Third Observing Run Using p y cbc l ive, Astrophys. J. 923, 254 (2021). ASJOAB 0004-637X 10.3847/1538-4357/ac2f9a
D. Davis, Data Quality Vetoes Applied to the Analysis of LIGO Data from the Third Observing Run, LIGO Report No. DCC-T2100045, 2021, https://dcc.ligo.org/LIGO-T2100045/public.
N. Arnaud, Category 1 (CAT1) Data Quality Vetoes Applied to the Analysis of the O3 Run Virgo Data, Virgo Report No. VIR-0560A-21, 2021, https://tds.virgo-gw.eu/content=3&r=18844.
F. Acernese (Virgo Collaboration), Virgo Detector Characterization and Data Quality during the O3 Run, arXiv:2205.01555.
S. Mozzon, L. K. Nuttall, A. Lundgren, T. Dent, S. Kumar, and A. H. Nitz, Dynamic Normalization for Compact Binary Coalescence Searches in Non-Stationary Noise, Classical Quantum Gravity 37, 215014 (2020). CQGRDG 0264-9381 10.1088/1361-6382/abac6c
P. J. Green, Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination, Biometrika 82, 711 (1995). BIOKAX 0006-3444 10.1093/biomet/82.4.711
B. Allen, W. Hua, and A. C. Ottewill, Automatic Cross Talk Removal from Multichannel Data, arXiv:gr-qc/9909083.
A. Lundgren, aLIGO LLO Logbook, Report No. 47707, 2019, https://alog.ligo-la.caltech.edu/aLOG/index.phpcallRep=47707.
S. Hourihane, K. Chatziioannou, M. Wijngaarden, D. Davis, T. Littenberg, and N. Cornish, Accurate Modeling and Mitigation of Overlapping Signals and Glitches in Gravitational-Wave Data, Phys. Rev. D 106, 042006 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.042006
E. Payne, S. Hourihane, J. Golomb, R. Udall, D. Davis, and K. Chatziioannou, Curious Case of GW200129: Interplay between Spin-Precession Inference and Data-Quality Issues, Phys. Rev. D 106, 104017 (2022). PRVDAQ 2470-0010 10.1103/PhysRevD.106.104017
K. Cannon, Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence, Astrophys. J. 748, 136 (2012). ASJOAB 0004-637X 10.1088/0004-637X/748/2/136
S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos, M. A. Frei, C. Hanna, A. J. Weinstein, and J. T. Whelan, Improving the Sensitivity of a Search for Coalescing Binary Black Holes with Nonprecessing Spins in Gravitational Wave Data, Phys. Rev. D 89, 024003 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.024003
A. Bohé, Improved Effective-One-Body Model of Spinning, Nonprecessing Binary Black Holes for the Era of Gravitational-Wave Astrophysics with Advanced Detectors, Phys. Rev. D 95, 044028 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044028
M. Pürrer, Frequency Domain Reduced Order Model of Aligned-Spin Effective-One-Body Waveforms with Generic Mass-Ratios and Spins, Phys. Rev. D 93, 064041 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.064041
E. Poisson, Gravitational Waves from Inspiraling Compact Binaries: The Quadrupole Moment Term, Phys. Rev. D 57, 5287 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.5287
T. Damour, P. Jaranowski, and G. Schaefer, Dimensional Regularization of the Gravitational Interaction of Point Masses, Phys. Lett. B 513, 147 (2001). PYLBAJ 0370-2693 10.1016/S0370-2693(01)00642-6
B. Mikóczi, M. Vasúth, and L. Á. Gergely, Self-Interaction Spin Effects in Inspiralling Compact Binaries, Phys. Rev. D 71, 124043 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124043
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Dimensional Regularization of the Third Post-Newtonian Gravitational Wave Generation from Two Point Masses, Phys. Rev. D 71, 124004 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124004
K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Higher-Order Spin Effects in the Amplitude and Phase of Gravitational Waveforms Emitted by Inspiraling Compact Binaries: Ready-to-Use Gravitational Waveforms, Phys. Rev. D 79, 104023 (2009); PRVDAQ 1550-7998 10.1103/PhysRevD.79.104023
K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner Phys. Rev. D 84, 049901(E) (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.049901
A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Comparison of Post-Newtonian Templates for Compact Binary Inspiral Signals in Gravitational-Wave Detectors, Phys. Rev. D 80, 084043 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.084043
A. Bohé, S. Marsat, and L. Blanchet, Next-to-Next-to-Leading Order Spin-Orbit Effects in the Gravitational Wave Flux and Orbital Phasing of Compact Binaries, Classical Quantum Gravity 30, 135009 (2013). CQGRDG 0264-9381 10.1088/0264-9381/30/13/135009
A. Bohé, G. Faye, S. Marsat, and E. K. Porter, Quadratic-in-Spin Effects in the Orbital Dynamics and Gravitational-Wave Energy Flux of Compact Binaries at the 3PN Order, Classical Quantum Gravity 32, 195010 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/19/195010
C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Ready-to-Use Post-Newtonian Gravitational Waveforms for Binary Black Holes with Nonprecessing Spins: An Update, Phys. Rev. D 93, 084054 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084054
A. Buonanno, Y. Chen, and M. Vallisneri, Detecting Gravitational Waves from Precessing Binaries of Spinning Compact Objects: Adiabatic Limit, Phys. Rev. D 67, 104025 (2003); PRVDAQ 0556-2821 10.1103/PhysRevD.67.104025
A. Buonanno, Y. Chen, and M. Vallisneri Phys. Rev. D 74, 029904(E) (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.029904
É. Racine, A. Buonanno, and L. E. Kidder, Recoil Velocity at 2PN Order for Spinning Black Hole Binaries, Phys. Rev. D 80, 044010 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.044010
J. Vines, É. É. Flanagan, and T. Hinderer, Post-1-Newtonian Tidal Effects in the Gravitational Waveform from Binary Inspirals, Phys. Rev. D 83, 084051 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.084051
S. Marsat, A. Bohé, L. Blanchet, and A. Buonanno, Next-to-Leading Tail-Induced Spin-Orbit Effects in the Gravitational Radiation Flux of Compact Binaries, Classical Quantum Gravity 31, 025023 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/2/025023
S. Marsat, Cubic Order Spin Effects in the Dynamics and Gravitational Wave Energy Flux of Compact Object Binaries, Classical Quantum Gravity 32, 085008 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/8/085008
A. Nitz, gwastro/pycbc: p y cbc Release v1.16.13, 10.5281/zenodo.4309869 (2020).
T. Dent and J. Veitch, Optimizing Gravitational-Wave Searches for a Population of Coalescing Binaries: Intrinsic Parameters, Phys. Rev. D 89, 062002 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.062002
S. Roy, A. S. Sengupta, and N. Thakor, Hybrid Geometric-Random Template-Placement Algorithm for Gravitational Wave Searches from Compact Binary Coalescences, Phys. Rev. D 95, 104045 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.104045
S. Roy, A. S. Sengupta, and P. Ajith, Effectual Template Banks for Upcoming Compact Binary Searches in Advanced-LIGO and Virgo Data, Phys. Rev. D 99, 024048 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.024048
T. Dal Canton and I. W. Harry, Designing a Template Bank to Observe Compact Binary Coalescences in Advanced LIGO's Second Observing Run, arXiv:1705.01845.
K. Chandra, V. Villa-Ortega, T. Dent, C. McIsaac, A. Pai, I. W. Harry, G. S. Cabourn Davies, and K. Soni, An Optimized p y cbc Search for Gravitational Waves from Intermediate-Mass Black Hole Mergers, Phys. Rev. D 104, 042004 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.042004
R. Pordes (OSG Consortium), The Open Science Grid, J. Phys. Conf. Ser. 78, 012057 (2007). JPCSDZ 1742-6588 10.1088/1742-6596/78/1/012057
I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwrin, The Pilot Way to Grid Resources Using glidein wms, WRI World Congr. 2, 428 (2009). 10.1109/CSIE.2009.950
C. Capano, T. Dent, Y.-M. Hu, M. Hendry, C. Messenger, and J. Veitch, Systematic Errors in Estimation of Gravitational-Wave Candidate Significance, arXiv:1601.00130.
A. H. Nitz, T. Dal Canton, D. Davis, and S. Reyes, Rapid Detection of Gravitational Waves from Compact Binary Mergers with p y cbc l ive, Phys. Rev. D 98, 024050 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.024050
A. H. Nitz, Distinguishing Short Duration Noise Transients in LIGO Data to Improve the p y cbc Search for Gravitational Waves from High Mass Binary Black Hole Mergers, Classical Quantum Gravity 35, 035016 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaa13d
S. Hooper, S. K. Chung, J. Luan, D. Blair, Y. Chen, and L. Wen, Summed Parallel Infinite Impulse Response Filters for Low-Latency Gravitational Wave Detection, Phys. Rev. D 86, 024012 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.024012
Y. Liu, Z. Du, S. K. Chung, S. Hooper, D. Blair, and L. Wen, GPU-Accelerated Low-Latency Real-Time Searches for Gravitational Waves from Compact Binary Coalescence, Classical Quantum Gravity 29, 235018 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/23/235018
X. Guo, Q. Chu, S. K. Chung, Z. Du, L. Wen, and Y. Gu, GPU-Acceleration on a Low-Latency Binary-Coalescence Gravitational Wave Search Pipeline, Comput. Phys. Commun. 231, 62 (2018). CPHCBZ 0010-4655 10.1016/j.cpc.2018.05.002
X. Guo, Q. Chu, Z. Du, and L. Went, GPU-Optimised Low-Latency Online Search for Gravitational Waves from Binary Coalescences, in Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO) (IEEE, New York, 2018), pp. 2638-2642, 10.23919/eusipco.2018.8553574.
J. Calderón Bustillo, F. Salemi, T. Dal Canton, and K. P. Jani, Sensitivity of Gravitational Wave Searches to the Full Signal of Intermediate-Mass Black Hole Binaries during the First Observing Run of Advanced LIGO, Phys. Rev. D 97, 024016 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.024016
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions, Phys. Rev. D 93, 122004 (2016); PRVDAQ 2470-0010 10.1103/PhysRevD.93.122004
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. D 94, 069903(E) (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.069903
J. Aasi (Virgo Collaboration), The Characterization of Virgo Data and Its Impact on Gravitational-Wave Searches, Classical Quantum Gravity 29, 155002 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/15/155002
V. Tiwari, S. Klimenko, V. Necula, and G. Mitselmakher, Reconstruction of Chirp Mass in Searches for Gravitational Wave Transients, Classical Quantum Gravity 33, 01LT01 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/1/01LT01
M. Was, M.-A. Bizouard, V. Brisson, F. Cavalier, M. Davier, P. Hello, N. Leroy, F. Robinet, and M. Vavoulidis, On the Background Estimation by Time Slides in a Network of Gravitational Wave Detectors, Classical Quantum Gravity 27, 015005 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/1/015005
S. P. Wright, Adjusted (Equation presented)-Values for Simultaneous Inference, Biometrics 48, 1005 (1992). BIOMB6 0006-341X 10.2307/2532694
P. A. R. Ade (Planck Collaboration), Planck 2015 Results. XIII. Cosmological Parameters, Astron. Astrophys. 594, A13 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201525830
S. Babak, A. Taracchini, and A. Buonanno, Validating the Effective-One-Body Model of Spinning, Precessing Binary Black Holes against Numerical Relativity, Phys. Rev. D 95, 024010 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024010
T. Dent, Extending the p y cbc Pastro Calculation to a Global Network, LIGO Report No. DCC-T2100060, 2021, https://dcc.ligo.org/LIGO-T2100060/public.
V. Tiwari, Estimation of the Sensitive Volume for Gravitational-Wave Source Populations Using Weighted Monte Carlo Integration, Classical Quantum Gravity 35, 145009 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aac89d
C. Talbot and E. Thrane, Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization, Astrophys. J. 856, 173 (2018). ASJOAB 0004-637X 10.3847/1538-4357/aab34c
H. K. Y. Fong, From Simulations to Signals: Analyzing Gravitational Waves from Compact Binary Coalescences, Ph. D. thesis, Toronto University, 2018.
T. Bayes, An Essay toward Solving a Problem in the Doctrine of Chances, Phil. Trans. R. Soc. London 53, 370 (1763). PTRSAV 0370-2316 10.1098/rstl.1763.0053
C. P. L. Berry, Parameter Estimation for Binary Neutron-Star Coalescences with Realistic Noise during the Advanced LIGO Era, Astrophys. J. 804, 114 (2015). ASJOAB 0004-637X 10.1088/0004-637X/804/2/114
R. L. Forward, Wide Band Laser Interferometer Gravitational Radiation Experiment, Phys. Rev. D 17, 379 (1978). PRVDAQ 0556-2821 10.1103/PhysRevD.17.379
K. S. Thorne, Gravitational Radiation, in Three Hundred Years of Gravitation, edited by S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, England, 1987), Chap. 9, pp. 330-458.
T. B. Littenberg and N. J. Cornish, Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
K. Chatziioannou, C.-J. Haster, T. B. Littenberg, W. M. Farr, S. Ghonge, M. Millhouse, J. A. Clark, and N. Cornish, Noise Spectral Estimation Methods and Their Impact on Gravitational Wave Measurement of Compact Binary Mergers, Phys. Rev. D 100, 104004 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.104004
S. Biscoveanu, C.-J. Haster, S. Vitale, and J. Davies, Quantifying the Effect of Power Spectral Density Uncertainty on Gravitational-Wave Parameter Estimation for Compact Binary Sources, Phys. Rev. D 102, 023008 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.023008
E. Payne, C. Talbot, P. D. Lasky, E. Thrane, and J. S. Kissel, Gravitational-Wave Astronomy with a Physical Calibration Model, Phys. Rev. D 102, 122004 (2020). PRVDAQ 2470-0010 10.1103/PhysRevD.102.122004
S. Vitale, C.-J. Haster, L. Sun, B. Farr, E. Goetz, J. Kissel, and C. Cahillane, Physical Approach to the Marginalization of LIGO Calibration Uncertainties, Phys. Rev. D 103, 063016 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.103.063016
C. Pankow, Mitigation of the Instrumental Noise Transient in Gravitational-Wave Data Surrounding GW170817, Phys. Rev. D 98, 084016 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084016
V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Surrogate Models for Precessing Binary Black Hole Simulations with Unequal Masses, Phys. Rev. Res. 1, 033015 (2019). PPRHAI 2643-1564 10.1103/PhysRevResearch.1.033015
A. Buonanno and T. Damour, Effective One-Body Approach to General Relativistic Two-Body Dynamics, Phys. Rev. D 59, 084006 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.59.084006
A. Buonanno and T. Damour, Transition from Inspiral to Plunge in Binary Black Hole Coalescences, Phys. Rev. D 62, 064015 (2000). PRVDAQ 0556-2821 10.1103/PhysRevD.62.064015
C. García-Quirós, S. Husa, M. Mateu-Lucena, and A. Borchers, Accelerating the Evaluation of Inspiral-Merger-Ringdown waveforms with Adapted Grids, Classical Quantum Gravity 38, 015006 (2021). CQGRDG 0264-9381 10.1088/1361-6382/abc36e
P. Schmidt, M. Hannam, S. Husa, and P. Ajith, Tracking the Precession of Compact Binaries from Their Gravitational-Wave Signal, Phys. Rev. D 84, 024046 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.024046
P. Schmidt, M. Hannam, and S. Husa, Towards Models of Gravitational Waveforms from Generic Binaries: A Simple Approximate Mapping between Precessing and Non-Precessing Inspiral Signals, Phys. Rev. D 86, 104063 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.104063
B. Brügmann, J. A. González, M. Hannam, S. Husa, and U. Sperhake, Exploring Black Hole Superkicks, Phys. Rev. D 77, 124047 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.124047
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. II. A Phenomenological Model for the Advanced Detector Era, Phys. Rev. D 93, 044007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007
F. Hofmann, E. Barausse, and L. Rezzolla, The Final Spin from Binary Black Holes in Quasi-Circular Orbits, Astrophys. J. Lett. 825, L19 (2016). AJLEEY 2041-8213 10.3847/2041-8205/825/2/L19
N. K. Johnson-McDaniel, A. Gupta, P. Ajith, D. Keitel, O. Birnholtz, and F. Ohme, Determining the Final Spin of a Binary Black Hole System Including In-Plane Spins: Method and Checks of Accuracy, LIGO Report No. DCC-T1600168, 2016, https://dcc.ligo.org/LIGO-T1600168/public.
F. Zappa, S. Bernuzzi, F. Pannarale, M. Mapelli, and N. Giacobbo, Black-Hole Remnants from Black-Hole-Neutron-Star Mergers, Phys. Rev. Lett. 123, 041102 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.041102
K. Martel and E. Poisson, Gravitational Waves from Eccentric Compact Binaries: Reduction in Signal-to-Noise Ratio due to Nonoptimal Signal Processing, Phys. Rev. D 60, 124008 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.60.124008
I. M. Romero-Shaw, P. D. Lasky, E. Thrane, and J. Calderón Bustillo, GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal, Astrophys. J. Lett. 903, L5 (2020). AJLEEY 2041-8213 10.3847/2041-8213/abbe26
A. Tucker and C. M. Will, Residual Eccentricity of Inspiralling Orbits at the Gravitational-Wave Detection Threshold: Accurate Estimates Using Post-Newtonian Theory, Phys. Rev. D 104, 104023 (2021). PRVDAQ 2470-0010 10.1103/PhysRevD.104.104023
W. Farr, Marginalisation of the Time and Phase Parameters in CBC Parameter Estimation, LIGO Report No. DCC-T1400460, 2014, https://dcc.ligo.org/LIGO-T1400460/public.
J. Lange, R. O'Shaughnessy, and M. Rizzo, Rapid and Accurate Parameter Inference for Coalescing, Precessing Compact Binaries, arXiv:1805.10457.
W. Farr, B. Farr, and T. Littenberg, Modelling Calibration Errors in CBC Waveforms, LIGO Report No. DCC-T1400682, 2014, https://dcc.ligo.org/LIGO-T1400682/public.