[en] Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind–wave–current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents. Here, we modeled the impact of major hurricane Irma (September 2017) on coral larval and stony coral tissue loss disease (SCTLD) connectivity in Florida's Coral Reef. We coupled high-resolution coastal ocean circulation and wave models to simulate the dispersal of virtual coral larvae and disease agents between thousands of reefs. While being a brief event, our results suggest the passage of hurricane Irma strongly increased the probability of long-distance exchanges while reducing larval supply. It created new connections that could promote coral resilience but also probably accelerated the spread of SCTLD by about a month. As they become more intense, hurricanes' double-edged effect will become increasingly pronounced, contributing to increased variability in transport patterns and an accelerated rate of change within coral reef ecosystems.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Dobbelaere, Thomas; Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
Dekens Apolline; Ecole Normale Supérieure de Paris (ENS), Paris, France
Saint-Amand Antoine; Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
Alaerts, Lauranne ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems) ; Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium
Holstein Daniel M.; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, Louisiana, USA
Hanerts Emmanuel; Earth and Life Institute (ELI), UCLouvain, Louvain-la-Neuve, Belgium ; Institute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Hurricanes enhance coral connectivity but also superspread coral diseases
Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., & Wake, G. (2017). Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling. Journal of Geophysical Research, Oceans, 122, 3939–3963. https://doi.org/10.1002/2016JC012219
Allahdadi, M. N., & Li, C. (2017). Effect of stratification on current hydrodynamics over Louisiana shelf during hurricane Katrina. Water Science and Engineering, 10, 154–165. https://doi.org/10.1016/j.wse.2017.03.012
Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A., & Estrada-Saldívar, N. (2022). Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Communications Biology, 5, 440. https://doi.org/10.1038/s42003-022-03398-6
Aronson, R. B., Precht, W. F., Aronson, R. B., & Precht, W. F. (2001). White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia, 460, 25–38. https://doi.org/10.1023/A:1013103928980
Banks, K. W., Riegl, B. M., Richards, V. P., Walker, B. K., Helme, K. P., Jordan, L. K. B., Phipps, J., Shivji, M. S., Speiler, R. E., & Dodge, R. E. (2008). The reef tract of continental Southeast Florida (Miami-Dade, Broward and Palm Beach Counties, USA). In B. M. Riegl & R. E. Dodge (Eds.), Coral reefs of the USA (pp. 175–220). Springer. https://doi.org/10.1007/978-1-4020-6847-8_5
Bhatia, K., Baker, A., Yang, W., Vecchi, G., Knutson, T., Murakami, H., Kossin, J., Hodges, K., Dixon, K., Bronselaer, B., & Whitlock, C. (2022). A potential explanation for the global increase in tropical cyclone rapid intensification. Nature Communications, 13, 6626.
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., & Whitlock, C. E. (2019). Recent increases in tropical cyclone intensification rates. Nature Communications, 10, 635. https://doi.org/10.1038/s41467-019-08471-z
Bonin, M. C., Almany, G. R., & Jones, G. P. (2011). Contrasting effects of habitat loss and fragmentation on coral-associated reef fishes. Ecology, 92, 1503–1512.
Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, Oceans, 104, 7649–7666. https://doi.org/10.1029/98JC02622
Bright, A., Peterson, A., Ladd, M., & Williams, D. (2021). Quicklook report: Coral spawning 2020: Activities and observations. NOAA. https://doi.org/10.25923/y12y-7850
Bruno, J. F., Petes, L. E., Harvell, C. D., & Hettinger, A. (2003). Nutrient enrichment can increase the severity of coral diseases. Ecology Letters, 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x
Cangialosi, J. P., Latto, A. S., & Berg, R. (2018). National hurricane center tropical cyclone report: Hurricane Irma (30 August–12 September 2017). Technical Report, National Oceanic and Atmospheric Administration and National Hurricane Center.
Carrigan, A. D., & Puotinen, M. (2014). Tropical cyclone cooling combats region-wide coral bleaching. Global Change Biology, 20, 1604–1613.
Carter, A. L., Gilchrist, H., Dexter, K. G., Gardner, C. J., Gough, C., Rocliffe, S., & Wilson, A. M. W. (2022). Cyclone impacts on coral reef communities in Southwest Madagascar. Frontiers in Marine Science, 9, 753325. https://doi.org/10.3389/fmars.2022.753325
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., & Bleck, R. (2007). The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. Journal of Marine Systems, 65, 60–83. https://doi.org/10.1016/j.jmarsys.2005.09.016
De'ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 109, 17995–17999. https://doi.org/10.1073/pnas.1208909109
Dobbelaere, T., Curcic, M., Le Hénaff, M., & Hanert, E. (2022). Impacts of Hurricane Irma (2017) on wave-induced ocean transport processes. Ocean Modelling, 171, 101947. https://doi.org/10.1016/j.ocemod.2022.101947
Dobbelaere, T., Holstein, D. M., Muller, E. M., Gramer, L. J., McEachron, L., Williams, S. D., & Hanert, E. (2022). Connecting the dots: Transmission of stony coral tissue loss disease from the Marquesas to the Dry Tortugas. Frontiers in Marine Science, 9, 778938.
Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M., & Hanert, E. (2020). Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Frontiers in Marine Science, 7, 1016.
Donahue, S., Acosta, A., Akins, L., Ault, J., & Cox, C. (2008). The state of coral reef ecosystems of the Florida Keys. In J. E. Waddell & A. M. Clarke (Eds.), The state of coral reef ecosystems of the United States and Pacific freely associated states: 2008 (pp. 161–187). NOAA.
Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A., & Hoegh-Guldberg, O. (2020). Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Communications Earth & Environment, 1, 1–9. https://doi.org/10.1038/s43247-020-00054-x
Eddy, T. D., Lam, V. W. Y., Reygondeau, G., Cisneros-Montemayor, A. M., Greer, K., Palomares, M. L. D., Bruno, J. F., Ota, Y., & Cheung, W. W. L. (2021). Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4, 1278–1285. https://doi.org/10.1016/j.oneear.2021.08.016
Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
Elliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007
Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin, 64, 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008
Ezer, T. (2018). On the interaction between a hurricane, the Gulf stream and coastal sea level. Ocean Dynamics, 68, 1259–1272.
Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5, 3794. https://doi.org/10.1038/ncomms4794
Figueiredo, J., Thomas, C. J., Deleersnijder, E., Lambrechts, J., Baird, A. H., Connolly, S. R., & Hanert, E. (2022). Global warming decreases connectivity among coral populations. Nature Climate Change, 12, 83–87. https://doi.org/10.1038/s41558-021-01248-7
Finkl, C. W., & Andrews, J. L. (2008). Shelf geomorphology along the Southeast Florida Atlantic continental platform: Barrier coral reefs, nearshore bedrock, and morphosedimentary features. Journal of Coastal Research, 244, 2008–2849. https://doi.org/10.2112/08A-0001.1
Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. (2017). Tract map v2.0. https://ocean.floridamarine.org/IntegratedReefMap/Docs/Metadata_UnifiedFloridaCoralReefMap_v20.html
Frys, C., Saint-Amand, A., le Hénaff, M., Figueiredo, J., Kuba, A., Walker, B., Lambrechts, J., Vallaeys, V., Vincent, D., & Hanert, E. (2020). Fine-scale coral connectivity pathways in the Florida reef tract: Implications for conservation and restoration. Frontiers in Marine Science, 7, 312. https://doi.org/10.3389/fmars.2020.00312
Grimaldi, C. M., Lowe, R. J., Benthuysen, J. A., Cuttler, M. V. W., Green, R. H., Radford, B., Ryan, N., & Gilmour, J. (2022). Hydrodynamic drivers of fine-scale connectivity within a coral reef atoll. Limnology and Oceanography, 67, 2204–2217.
Grove, L. J. W., Grove, L. J. W., Blondeau, J., Cain, E., Davis, I. M., Edwards, K. F., Groves, S. H., Hile, S. D., Langwiser, C., Siceloff, L., Swanson, D. W., Towle, E. K., Viehman, T. S., & Williams, B. (2022). National Coral Reef Monitoring Program, biological monitoring summary – Florida: 2020–2021.
Hagman, D. K., Gittings, S. R., & Deslarzes, K. J. (1998). Timing, species participation, and environmental factors influencing annual mass spawning at the Flower Garden Banks (Northwest Gulf of Mexico). Gulf of Mexico Science, 16, 6.
Her, Y. G., Smyth, A., Fletcher, P., Bassil, E., Stingl, U., Brym, Z., & Qui, J. (2021). Hurricane impacts on Florida's agriculture and natural resources. https://edis.ifas.ufl.edu/publication/AE528
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049.
Heyward, A., & Negri, A. (2010). Plasticity of larval pre-competency in response to temperature: Observations on multiple broadcast spawning coral species. Coral Reefs, 29, 631–636.
Heyward, A., & Negri, A. (2012). Turbulence, cleavage, and the naked embryo: A case for coral clones. Science, 335, 1064.
Hoegh-Guldberg, O., Pendleton, L., & Kaup, A. (2019). People and the changing nature of coral reefs. Regional Studies in Marine Science, 30, 100699. https://doi.org/10.1016/j.rsma.2019.100699
Hoffmeister, J. E., & Multer, H. G. (1968). Geology and origin of the Florida Keys. GSA Bulletin, 79, 1487–1502. https://doi.org/10.1130/0016-7606(1968)79[1487:GAOOTF]2.0.CO;2
Johnston, M. W., & Purkis, S. J. (2015). Hurricanes accelerated the Florida–Bahamas lionfish invasion. Global Change Biology, 21, 2249–2260.
Jones, R., Ricardo, G. F., & Negri, A. P. (2015). Effects of sediments on the reproductive cycle of corals. Marine Pollution Bulletin, 100, 13–33. https://doi.org/10.1016/j.marpolbul.2015.08.021
Kennedy, J. P., Dangremond, E. M., Hayes, M. A., Preziosi, R. F., Rowntree, J. K., & Feller, I. C. (2020). Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Molecular Ecology, 29, 2583–2597.
King, S., Saint-Amand, A., Walker, B. K., Hanert, E., & Figueiredo, J. (2023). Larval dispersal patterns and connectivity of Acropora on Florida's Coral Reef and its implications for restoration. Frontiers in Marine Science, 9, 1038463.
Kline, D. I., & Vollmer, S. V. (2011). White band disease (type I) of endangered Caribbean Acroporid corals is caused by pathogenic bacteria. Scientific Reports, 1, 7. https://doi.org/10.1038/srep00007
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C. H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101, E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1
Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558, 104–107.
Kourafalou, V. H., & Kang, H. (2012). Florida current meandering and evolution of cyclonic eddies along the Florida Keys Reef Tract: Are they interconnected? Journal of Geophysical Research, Oceans, 117, 5028. https://doi.org/10.1029/2011JC007383
Kuba, A. (2016). Transgenerational effects of thermal stress: Impacts on and beyond coral reproduction. NSUWorks.
Kundu, P. K. (1976). Ekman veering observed near the ocean bottom. Journal of Physical Oceanography, 6, 238–242.
Lambrechts, J., Hanert, E., Deleersnijder, E., Bernard, P. E., Legat, V., Remacle, J. F., & Wolanski, E. (2008). A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuarine, Coastal and Shelf Science, 79, 143–151.
Le, H.-A., Lambrechts, J., Ortleb, S., Gratiot, N., Deleersnijder, E. L. C., & Soares-Frazão, S. (2020). An implicit wetting–drying algorithm for the discontinuous Galerkin method: Application to the Tonle Sap, Mekong River Basin. Environmental Fluid Mechanics, 20, 923–951. https://doi.org/10.1007/s10652-019-09732-7
Lee, T. N., Clarke, M. E., Williams, E., Szmant, A. F., & Berger, T. (1994). Evolution of the Tortugas gyre and its influence on recruitment in the Florida Keys. Bulletin of Marine Science, 54, 621–646.
Lee, T. N., & Smith, N. (2002). Volume transport variability through the Florida Keys tidal channels. Continental Shelf Research, 22, 1361–1377. https://doi.org/10.1016/S0278-4343(02)00003-1
Leipper, D. F. (1970). A sequence of current patterns in the Gulf of Mexico. Journal of Geophysical Research, 75, 637–657. https://doi.org/10.1029/JC075i003p00637
Limouzy-Paris, C. B., Graber, H. C., Jones, D. L., Röpke, A. W., & Richards, W. J. (1997). Translocation of larval coral reef fishes via sub-mesoscale spin-off eddies from the Florida current. Bulletin of Marine Science, 60, 966–983.
Liu, Y., Weisberg, R. H., & Zheng, L. (2020). Impacts of hurricane Irma on the circulation and transport in Florida Bay and the Charlotte Harbor estuary. Estuaries and Coasts, 43, 1194–1216.
Lyons, M. B., Murray, N. J., Kennedy, E. V., Kovacs, E. M., Castro-Sanguino, C., Phinn, S. R., Acevedo, R. B., Alvarez, A. O., Say, C., Tudman, P., Markey, K., Roe, M., Canto, R. F., Fox, H. E., Bambic, B., Lieb, Z., Asner, G. P., Martin, P. M., Knapp, D. E., … Roelfsema, C. M. (2024). New global area estimates for coral reefs from high-resolution mapping. Cell Reports Sustainability, 1, 100015.
Malmstadt, J., Scheitlin, K., & Elsner, J. (2009). Florida hurricanes and damage costs. Southeastern Geographer, 49, 108–131. https://doi.org/10.1353/sgo.0.0045
Manzello, D. P., Brandt, M., Smith, T. B., Lirman, D., Hendee, J. C., & Nemeth, R. S. (2007). Hurricanes benefit bleached corals. Proceedings of the National Academy of Sciences of the United States of America, 104, 12035–12039. https://doi.org/10.1073/pnas.0701194104
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215–233. https://doi.org/10.1016/S0921-8009(99)00009-9
Monroy, P., Rossi, V., Ser-Giacomi, E., Lopez, C., & Hernandez-Garcia, E. (2017). Sensitivity and robustness of larval connectivity diagnostics obtained from Lagrangian flow networks. ICES Journal of Marine Science, 74, 1763–1779. https://doi.org/10.1093/icesjms/fsw235
Muller, E. M., Bartels, E., & Baums, I. B. (2018). Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife, 7, e35066.
Muller, E. M., Sartor, C., Alcaraz, N. I., & Van Woesik, R. (2020). Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Frontiers in Marine Science, 7, 163.
Muller, E. M., & van Woesik, R. (2012). Caribbean coral diseases: Primary transmission or secondary infection? Global Change Biology, 18, 3529–3535.
Murphy, B. S. (2014). PyKrige: Development of a kriging toolkit for Python. AGU fall meeting abstracts. H51K-0753.
Neely, K. (2018). Surveying the Florida Keys southern coral disease boundary. Final summary report.
Neumann, C. J. (1999). Tropical cyclones of the North Atlantic ocean, 1871–1998. https://repository.library.noaa.gov/view/noaa/1086
NOAA. (2018a). Costliest U.S. tropical cyclones tables updated. https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf
NOAA. (2018b). Stony coral tissue loss disease case definition. https://nmsfloridakeys.blob.core.windows.net/floridakeys-prod/media/docs/20181002-stony-coral-tissue-loss-disease-case-definition.pdf
NOAA. (2020). NOAA strategy for stony coral tissue loss disease response and prevention. https://www.coris.noaa.gov/activities/sctld_strategy/welcome.html
NOAA. (2022). NOAA and partners assess reef, aid recovery following Hurricane Irma. https://sanctuaries.noaa.gov/news/jan18/noaa-and-partners-assess-reef-aid-recovery-following-irma.html
Nozawa, Y., & Harrison, P. L. (2007). Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Marine Biology, 152, 1181–1185.
Porter, J. W., & Meier, O. W. (1992). Quantification of loss and change in Floridian reef coral populations. Integrative and Comparative Biology, 32, 625–640. https://doi.org/10.1093/icb/32.6.625
Powell, M. D., Houston, S. H., Amat, L. R., & Morisseau-Leroy, N. (1998). The HRD real-time hurricane wind analysis system. Journal of Wind Engineering and Industrial Aerodynamics, 77–78, 53–64. https://doi.org/10.1016/S0167-6105(98)00131-7
Pratchett, M. S., Caballes, C. F., Wilmes, J. C., Matthews, S., Mellin, C., Sweatman, H. P., Nadler, L. E., Brodie, J., Thompson, C. A., Hoey, J., & Bos, A. R. (2017). Thirty years of research on crown-of-thorns starfish (1986–2016): Scientific advances and emerging opportunities. Diversity, 9, 41.
Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R., & van Woesik, R. (2016). Unprecedented disease-related coral mortality in southeastern Florida. Scientific Reports, 6, 31374. https://doi.org/10.1038/srep31374
Radford, B., Babcock, R., Van Niel, K., & Done, T. (2014). Are cyclones agents for connectivity between reefs? Journal of Biogeography, 41, 1367–1378.
Rogers, A., Blanchard, J. L., & Mumby, P. J. (2014). Vulnerability of coral reef fisheries to a loss of structural complexity. Current Biology, 24, 1000–1005. https://doi.org/10.1016/j.cub.2014.03.026
Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., Lunz, K. S., Macaulay, K. A., Bartlett, L. A., Meyers, M. K., & Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125–141. https://doi.org/10.3354/meps10427
Scoffin, T. P. (1993). The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs, 12, 203–221. https://doi.org/10.1007/BF00334480
Shulman, M. J., & Bermingham, E. (1995). Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution, 49, 897–910. https://doi.org/10.1111/j.1558-5646.1995.tb02325.x
Sponaugle, S., & Lee, T. (2007). Patterns and processes of larval fish supply to the coral reefs of the upper Florida keys. Marine Ecology Progress Series, 331, 85–100. https://doi.org/10.3354/meps331085
Thomas, C. J., Lambrechts, J., Wolanski, E., Traag, V. A., Blondel, V. D., Deleersnijder, E., & Hanert, E. (2014). Numerical modelling and graph theory tools to study ecological connectivity in the great barrier reef. Ecological Modelling, 272, 160–174. https://doi.org/10.1016/j.ecolmodel.2013.10.002
Torn, R. D., & Snyder, C. (2012). Uncertainty of tropical cyclone best-track information. Weather and Forecasting, 27, 715–729.
Varlas, G., Vervatis, V., Spyrou, C., Papadopoulou, E., & Katsafados, P. (2020). Investigating the impact of atmosphere-wave-ocean interactions on a Mediterranean tropical-like cyclone. Ocean Modelling, 153, 101675. https://doi.org/10.1016/j.ocemod.2020.101675
Viehman, S., Gittings, S., Groves, S., Moore, J., Moore, T., & Stein, J. (2018). NCCOS assessment: Coral disturbance response monitoring (DRM) along the Florida reef tract following hurricane Irma from 2017-10-09 to 2017–10-18 (NCEI accession 0179071). NOAA National Centers for Environmental Information. https://doi.org/10.25921/sscd-6h41
Vukovich, F. M. (1988). Loop current boundary variations. Journal of Geophysical Research, Oceans, 93, 15585–15591. https://doi.org/10.1029/JC093iC12p15585
Walsh, K. J., Camargo, S. J., Knutson, T. R., Kossin, J., Lee, T.-C., Murakami, H., & Patricola, C. (2019). Tropical cyclones and climate change. Tropical Cyclone Research and Review, 8, 240–250.
Xian, S., Feng, K., Lin, N., Marsooli, R., & Hatzikyriakou, A. (2018). Brief communication: Rapid assessment of damaged residential buildings in the Florida Keys after Hurricane Irma. Natural Hazards and Earth System Sciences, 18, 2041–2045. https://doi.org/10.5194/nhess-18-2041-2018