Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study.
Beckers, Elise; Van Egroo, Maxime; Ashton, Nicholas Jet al.
GFAP; NODDI; aging; brain microstructure; locus coeruleus; Glial Fibrillary Acidic Protein; Humans; Female; Male; Aged; Middle Aged; Adult; Aged, 80 and over; Magnetic Resonance Imaging/methods; Cerebral Cortex/diagnostic imaging; Brain/diagnostic imaging; Diffusion Magnetic Resonance Imaging/methods; Neurites/physiology; Locus Coeruleus/diagnostic imaging; Astrocytes/physiology; Glial Fibrillary Acidic Protein/metabolism
Abstract :
[en] The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Author, co-author :
Beckers, Elise ; Université de Liège - ULiège > GIGA ; Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
Van Egroo, Maxime; Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands ; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA ; Harvard Medical School, Boston, MA 02115, USA
Ashton, Nicholas J; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden ; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RT, UK ; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK ; Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
Blennow, Kaj; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden ; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden ; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France ; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, China
Vandewalle, Gilles ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Zetterberg, Henrik; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden ; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden ; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK ; UK Dementia Research Institute at UCL, London W1T 7NF, UK ; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China ; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
Poser, Benedikt A; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
Jacobs, Heidi I L; Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands ; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA ; Harvard Medical School, Boston, MA 02115, USA
Language :
English
Title :
Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study.
HE - 101053962 - FLUBIODEM - Fluid Biomarkers for Neurodegenerative Dementias
Name of the research project :
Bluefield Project European Union Joint Programme—Neurodegenerative Disease Research
Funders :
Alzheimer Nederland NIH - National Institutes of Health BrightFocus Foundation Marie Skłodowska-Curie Actions Maastricht Imaging Valley F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège - University of Liège Swedish Research Council EU - European Union ADDF - Alzheimer's Drug Discovery Foundation Alzheimer's Association CAF - Cure Alzheimer’s Fund Olav Thon Foundation Erling Persson Family Foundation Stiftelsen för Gamla Tjänarinnor Hjärnfonden NIHR BRC - NIHR Imperial Biomedical Research Centre UK DRI - UK Dementia Research Institute
Funding text :
Alzheimer's Association 2021 Zenith Award; ALF-agreement; European Union Joint Program for Neurodegenerative Disorders
Asken BM, Elahi FM, La Joie R, Strom A, Staffaroni AM, Lindbergh CA, Apple AC, You M, Weiner-Light S, Brathaban N, et al. Plasma glial fibrillary acidic protein levels differ along the spectra of amyloid burden and clinical disease stage. J Alzheimers Dis. 2020:78(1): 265–276. https://doi.org/10.3233/jad-200755.
Bachman SL, Dahl MJ, Werkle-Bergner M, Düzel S, Forlim CG, Lindenberger U, Kühn S, Mather M. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol Aging. 2021:100:72–82. https://doi.org/10.1016/j.neurobiolaging.2020.12.019.
Bekar LK, He W, Nedergaard M. Locus coeruleus alpha-adrenergicmediated activation of cortical astrocytes in vivo. Cereb Cortex. 2008:18(12):2789–2795. https://doi.org/10.1093/cercor/ bhn040.
Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, Karikari TK, Hourregue C, Cognat E, Dumurgier J, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 2021:78(12):1471–1483. https://doi.org/10.1001/jamaneurol.2021.3671.
Bettcher BM, Olson KE, Carlson NE, McConnell BV, Boyd T, Adame V, Solano DA, Anton P, Markham N, Thaker AA, et al. Astrogliosis and episodic memory in late life: higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer’s disease. Neurobiol Aging. 2021:103:68–77. https://doi.org/10.1016/j.neurobiolaging.2021.02.012.
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011:70(11):960–969. https://doi.org/10.1097/NEN.0b013e318232a379.
Braun D, Madrigal JL, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol. 2014:12(4):342–352. https://doi.org/10.2174/1570159x12666140828220938.
Chandler DJ, Gao WJ, Waterhouse BD. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci USA. 2014:111(18):6816–6821. https://doi.org/10.1073/pnas.1320827111.
Chan-Palay V, Asan E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol. 1989:287(3):373–392. https://doi.org/10.1002/cne.902870308.
Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. 2021:11(1):27. https://doi.org/10.1038/s41398-020-01137-1.
Dahl MJ, Mather M, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav. 2019:3(11):1203–1214. https://doi.org/10.1038/ s41562-019-0715-2.
Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci. 2022a:26(1):38–52. https://doi.org/10.1016/j.tics.2021.10.009.
Dahl MJ, Mather M, Werkle-Bergner M, Kennedy BL, Guzman S, Hurth K, Miller CA, Qiao Y, Shi Y, Chui HC, et al. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer’s disease. Neurobiol Aging. 2022b: 112:39–54. https://doi.org/10.1016/j.neurobiolaging.2021.11.006.
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage. 1999:9(2): 179–194. https://doi.org/10.1006/nimg.1998.0395.
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006:31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021.
Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience. 2013:251: 21–32. https://doi.org/10.1016/j.neuroscience.2012.09.077.
Ehrenberg AJ, Nguy AK, Theofilas P, Dunlop S, Suemoto CK, Di Lorenzo Alho AT, Leite RP, Diehl Rodriguez R, Mejia MB, Rüb U, et al. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer’s disease. Neuropathol Appl Neurobiol. 2017:43(5):393–408. https://doi.org/10.1111/nan. 12387.
Elman JA, Puckett OK, Hagler DJ, Pearce RC, Fennema-Notestine C, Hatton SN, Lyons MJ, McEvoy LK, Panizzon MS, Reas ET, et al. Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cereb Cortex. 2022:32(19): 4191–4203. https://doi.org/10.1093/cercor/bhab475.
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer’s disease: challenges and opportunities. Neurosci Biobehav Rev. 2023:144:104998. https://doi.org/10.1016/j.neubiorev.2022.104998.
Eustache P, Nemmi F, Saint-Aubert L, Pariente J, Péran P. Multimodal magnetic resonance imaging in Alzheimer’s disease patients at prodromal stage. J Alzheimers Dis. 2016:50(4):1035–1050. https://doi.org/10.3233/jad-150353.
Evans AK, Defensor E, Shamloo M. Selective vulnerability of the locus coeruleus noradrenergic system and its role in modulation of neuroinf lammation, cognition, and neurodegeneration. Front Pharmacol. 2022:13:1030609. https://doi.org/10.3389/ fphar.2022.1030609.
Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E. Noradrenergic regulation of inf lammatory gene expression in brain. Neurochem Int. 2002:41(5):357–365. https://doi.org/10.1016/s0197-0186(02)00049-9.
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinf lammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016:139(S2):154–178. https://doi.org/10.1111/jnc.13447.
Finnell JE, Moffitt CM, Hesser LA, Harrington E, Melson MN, Wood CS, Wood SK. The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain Behav Immun. 2019:79:102–113. https://doi.org/10.1016/j.bbi.2019.01.021.
Fischl B. FreeSurfer. NeuroImage. 2012:62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021.
Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: astrocytes in Alzheimer’s disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol. 2017:43(4):281–298. https://doi.org/10.1111/nan.12338.
Gilvesy A, Husen E, Magloczky Z, Mihaly O, Hortobágyi T, Kanatani S, Heinsen H, Renier N, Hökfelt T, Mulder J, et al. Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus–pericoerulear complex by three-dimensional imaging. Acta Neuropathol. 2022:144(4):651–676. https://doi.org/10.1007/ s00401-022-02477-6.
Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, Sastre M, Galldiks N, Zimmer A, Hoehn M, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006:26(5):1343–1354. https://doi.org/10.1523/jneurosci.4236-05.2006.
Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch U-K, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci. 2010:107(13): 6058–6063. https://doi.org/10.1073/pnas.0909586107.
Jacobs HIL, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, Properzi M, Hampton OL, d’Oleire Uquillas F, Sanchez JS, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021a:13(612):eabj2511. https://doi.org/10.1126/scitranslmed.abj2511.
Jacobs HIL, Riphagen JM, Ramakers I, Verhey FRJ. Alzheimer’s disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry. 2021b:26(3):897–906. https://doi.org/10.1038/s41380-019-0437-x.
Jacobs HIL, Becker JA, Kwong K, Munera D, Ramirez-Gomez L, Engels-Domínguez N, Sanchez JS, Vila-Castelar C, Baena A, Sperling RA, et al. Waning locus coeruleus integrity precedes cortical tau accrual in preclinical autosomal dominant Alzheimer’s disease. Alzheimers Dement. 2023:19(1):169–180. https://doi.org/10.1002/alz.12656.
Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012:62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015.
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods. 2020:346:108908. https://doi.org/10.1016/j.jneumeth.2020.108908.
Kang SS, Meng L, Zhang X, Wu Z, Mancieri A, Xie B, Liu X, Weinshenker D, Peng J, Zhang Z, et al. Tau modification by the norepinephrine metabolite DOPEGAL stimulates its pathology and propagation. Nat Struct Mol Biol. 2022:29(4):292–305. https://doi.org/10.1038/s41594-022-00745-3.
Langley J, Hussain S, Flores JJ, Bennett IJ, Hu X. Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta. Neurobiol Aging. 2020:87:89–97. https://doi.org/10.1016/j.neurobiolaging.2019.11.016.
Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010:49(2):1271–1281. https://doi.org/10.1016/j.neuroimage.2009.10.002.
Mather M, Harley CW. The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci. 2016:20(3): 214–226. https://doi.org/10.1016/j.tics.2016.01.001.
Mowinckel AM, Vidal-Piñeiro D. Visualization of brain statistics with R packages ggseg and ggseg3d. Adv Methods Pract Psychol Sci. 2020:3(4):466–483. https://doi.org/10.1177/2515245920928009.
Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE. GFAP mRNA increases with age in rat and human brain. Neurobiol Aging. 1993: 14(5):421–429. https://doi.org/10.1016/0197-4580(93)90100-p.
Pannese E. Morphological changes in nerve cells during normal aging. Brain Struct Funct. 2011:216(2):85–89. https://doi.org/10.1007/s00429-011-0308- y.
Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: the PACC5. Alzheimers Dement. 2017:3(4):668–677. https://doi.org/10.1016/j.trci.2017.10.004.
Porat S, Sibilia F, Yoon J, Shi Y, Dahl MJ, Werkle-Bergner M, Düzel S, Bodammer N, Lindenberger U, Kühn S, et al. Age differences in diffusivity in the locus coeruleus and its ascending noradrenergic tract. NeuroImage. 2022:251:119022. https://doi.org/10.1016/j.neuroimage.2022.119022.
Porchet R, Probst A, Bouras C, Dráberová E, Dráber P, Riederer BM. Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics. 2003:3(8):1476–1485. https://doi.org/10.1002/pmic.200300456.
Price BR, Johnson LA, Norris CM. Reactive astrocytes: the nexus of pathological and clinical hallmarks of Alzheimer’s disease. Ageing Res Rev. 2021:68:101335. https://doi.org/10.1016/j.arr.2021.101335.
Priovoulos N, Jacobs HIL, Ivanov D, Uludag K, Verhey FRJ, Poser BA. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. NeuroImage. 2018:168: 427–436. https://doi.org/10.1016/j.neuroimage.2017.07.045.
Priovoulos N, van Boxel SCJ, Jacobs HIL, Poser BA, Uludag K, Verhey FRJ, Ivanov D. Unraveling the contributions to the neuromelanin-MRI contrast. Brain Struct Funct. 2020:225(9):2757–2774. https://doi.org/10.1007/s00429-020-02153-z.
Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004:14(7):721–730. https://doi.org/10.1093/cercor/bhh032.
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol. 2008:6(3):235–253. https://doi.org/10.2174/157015908785777229.
Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009:10(3):211–223. https://doi.org/10.1038/ nrn2573.
Schiavone F, Charlton RA, Barrick TR, Morris RG, Markus HS. Imaging age-related cognitive decline: a comparison of diffusion tensor and magnetization transfer MRI. J Magn Reson Imaging. 2009:29(1): 23–30. https://doi.org/10.1002/jmri.21572.
Simrén J, Weninger H, Brum WS, Khalil S, Benedet AL, Blennow K, Zetterberg H, Ashton NJ. Differences between blood and cerebrospinal fluid glial fibrillary acidic protein levels: the effect of sample stability. Alzheimers Dement. 2022:18(10):1988–1992. https://doi.org/10.1002/alz.12806.
Spotorno N, Strandberg O, Stomrud E, Janelidze S, Blennow K, Nilsson M, van Westen D, Hansson O. Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer’s disease. Brain. 2023:147(3):961–969. https://doi.org/10.1093/brain/awad428.
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, et al. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun. 2023:113:124–135. https://doi.org/10.1016/j.bbi.2023.06.026.
Theofilas P, Ehrenberg AJ, Dunlop S, Di Lorenzo Alho AT, Nguy A, Leite REP, Rodriguez RD, Mejia MB, Suemoto CK, Ferretti-Rebustini REL, et al. Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: a stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement. 2017:13(3):236–246. https://doi.org/10.1016/j.jalz.2016.06.2362.
Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The locus coeruleus is a complex and differentiated Neuromodulatory system. Neuron. 2018:99(5):1055–1068.e6. https://doi.org/10.1016/j.neuron.2018.07.037.
Van Egroo M, van Hooren RWE, Jacobs HIL. Associations between locus coeruleus integrity and nocturnal awakenings in the context of Alzheimer’s disease plasma biomarkers: a 7T MRI study. Alzheimers Res Ther. 2021:13(1):159. https://doi.org/10.1186/ s13195-021-00902-8.
Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HIL. Importance of the locus coeruleus–norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer’s disease. Sleep Med Rev. 2022:62:101592. https://doi.org/10.1016/j.smrv.2022. 101592.
Van Egroo M, Riphagen JM, Ashton NJ, Janelidze S, Sperling RA, Johnson KA, Yang HS, Bennett DA, Blennow K, Hansson O, et al. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau. Mol Psychiatry. 2023:28(6):2412–2422. https://doi.org/10.1038/s41380-023-02041-y.
van der Velpen IF, Vlasov V, Evans TE, Ikram MK, Gutman BA, Roshchupkin GV, Adams HH, Vernooij MW, Ikram MA. Subcortical brain structures and the risk of dementia in the Rotterdam study. Alzheimers Dement. 2023:19(2):646–657. https://doi.org/10.1002/alz.12690.
Vogt NM, Hunt JFV, Adluru N, Ma Y, Van Hulle CA, Iii DCD, Kecskemeti SR, Chin NA, Carlsson CM, Asthana S, et al. Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults. Alzheimers Dement. 2022:18(1):65–76. https://doi.org/10.1002/alz.12364.
Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, Schneider JA, Bennett DA. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology. 2013:80(13):1202–1208. https://doi.org/10.1212/WNL.0b013e3182897103.
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012: 61(4):1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03. 072.