[en] Abstract
The Greenland Ice Sheet (GrIS) meltwater runoff has increased considerably since the 1990s, leading to implications for the ice sheet mass balance and ecosystem dynamics in ice-free areas. Extreme weather events will likely continue to occur in the coming decades. Therefore, a more thorough understanding of the spatiotemporal patterns of extreme melting events is of interest. This study aims to analyze the evolution of extreme melting events acrossthe GrIS and determine the climatic factors that drive them. Specifically, we have analyzed extreme melting events (90th percentile) across the GrIS from 1950 to 2022 and examined their links to the surface energy balance (SEB) and large-scale atmospheric circulation. Extreme melting days account for approximately 35-40% of the total accumulated melting per season. We found that extreme melting frequency, intensity, and contribution to the total accumulated June, July and August (summer) melting show a statistically significant upward trend at a 95% confidence level. The largest trends are detected across the northern GrIS. The trends are independent of the extreme melting percentile rank (90th, 97th, or 99th) analyzed, and are consistent with average melting trends that exhibit an increase of similar magnitude and spatial configuration. Radiation plays a dominant role in controlling the SEB during extreme melting days. The increase in extreme melting frequency and intensity is driven by the increase of anticyclonic weather types during summer and more energy available for melting. Our results help to enhance the understanding of extreme events in the Arctic.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bonsoms, Josep; 1 Department of Geography, Universitat de Barcelona, Barcelona, Spain
Oliva, Marc; 1 Department of Geography, Universitat de Barcelona, Barcelona, Spain
López-Moreno, Juan I.; 2 Instituto Pirenaico de Ecología (IPE-CSIC), Campus de Aula Dei, Zaragoza, Spain
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Rising extreme meltwater trends in Greenland ice sheet (1950 – 2022): surface energy balance and large-scale circulation changes
Publication date :
18 June 2024
Journal title :
Journal of Climate
ISSN :
0894-8755
eISSN :
1520-0442
Publisher :
American Meteorological Society
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Alley, R. B., and S. Anandakrishnan, 1995: Variations in melt-layer frequency in the GISP2 ice core: Implications for Holocene summer temperatures in central Greenland. Ann. Glaciol., 21, 64–70, https://doi.org/10.3189/S0260305500015615.
Antwerpen, R. M., M. Tedesco, X. Fettweis, P. Alexander, and W. J. Van de Berg, 2022: Assessing bare-ice albedo simulated by MAR over the Greenland Ice Sheet (2000–2021) and implications for meltwater production estimates. Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022.
Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86, https://doi.org/10.1038/nature12002.
Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263–267, https://doi.org/10.1038/nclimate3240.
Bonsoms, J., S. Gonzalez, M. Prohom, P. Esteban, F. Salvador-Franch, J. I. López-Moreno, and M. Oliva, 2021: Spatiotemporal patterns of snow in the Catalan Pyrenees (NE Iberia). Int. J. Climatol., 41, 5676–5697, https://doi.org/10.1002/joc.7147.
Bonsoms, J., J. I. López-Moreno, S. González, and M. Oliva, 2022: Increase of the energy available for snow ablation in the Pyrenees (1959–2020) and its relation to atmospheric circulation. Atmos. Res., 275, 106228, https://doi.org/10.1016/j.atmosres.2022.106228.
Box, J. E., 2013: Greenland Ice Sheet mass balance reconstruction. Part II: Surface mass balance (1840–2010). J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1.
Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland Ice Sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012.
Box, J. E., and Coauthors, 2022: Greenland Ice Sheet climate disequilibrium and committed sea-level rise. Nat. Climate Change, 12, 808–813, https://doi.org/10.1038/s41558-022-01441-2.
Box, J. E., and Coauthors, 2023: Greenland Ice Sheet rainfall climatology, extremes and atmospheric river rapids. Meteor. Appl., 30, e2134, https://doi.org/10.1002/met.2134.
Brun, E., P. David, M. Sudul, and G. Brunot, 1992: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552.
Brutel-Vuilmet, C., M. Ménégoz, and G. Krinner, 2013: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere, 7, 67–80, https://doi.org/10.5194/tc-7-67-2013.
Chandler, D. M., and A. Hubbard, 2023: Widespread partial-depth hydrofractures in ice sheets driven by supraglacial streams. Nat. Geosci., 16, 605–611, https://doi.org/10.1038/s41561-023-01208-0.
Colgan, W., K. Steffen, W. S. McLamb, W. Abdalati, H. Rajaram, R. Motyka, T. Phillips, and R. Anderson, 2011: An increase in crevasse extent, West Greenland: Hydrologic implications. Geophys. Res. Lett., 38, L18502, https://doi.org/10.1029/2011GL048491.
Constable, A. J., S. Harper, J. Dawson, K. Holsman, T. Mustonen, D. Piepenburg, and B. Rost, 2022: Cross-chapter paper 6: Polar regions. Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press, 2319–2368.
Culberg, R., D. M. Schroeder, and W. Chu, 2021: Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun., 12, 2336, https://doi.org/10.1038/s41467-021-22656-5.
Cullather, R. I., and S. M. J. Nowicki, 2018: Greenland Ice Sheet surface melt and its relation to daily atmospheric conditions. J. Climate, 31, 1897–1919, https://doi.org/10.1175/JCLI-D-170447.1.
de La Peña, S., and Coauthors, 2015: Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming. Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015.
Delhasse, A., X. Fettweis, C. Kittel, C. Amory, and C. Agosta, 2018: Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere, 12, 3409–3418, https://doi.org/10.5194/tc-12-3409-2018.
Delhasse, A., C. Kittel, C. Amory, S. Hofer, D. Van As, R. S. Fausto, and X. Fettweis, 2020: Brief communication: Evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet. Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020.
De Ridder, K., and H. Gallé, 1998: Land surface–induced regional climate change in southern Israel. J. Appl. Meteor., 37, 1470–1485, https://doi.org/10.1175/1520-0450(1998)037%3C1470:LSIRCC%3E2.0.CO;2.
Dumont, M., and Coauthors, 2014: Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci., 7, 509–512, https://doi.org/10.1038/ngeo2180.
Esteban, P., P. D. Jones, J. Martín-Vide, and M. Mases, 2005: Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int. J. Climatol., 25, 319–329, https://doi.org/10.1002/joc.1103.
Fausto, R. S., D. Van As, J. E. Box, W. Colgan, P. L. Langen, and R. H. Mottram, 2016: The implication of nonradiative energy fluxes dominating Greenland Ice Sheet exceptional ablation area surface melt in 2012. Geophys. Res. Lett., 43, 2649–2658, https://doi.org/10.1002/2016GL067720.
Fettweis, X., G. Mabille, M. Erpicum, S. Nicolay, and M. van den Broeke, 2011a: The 1958–2009 Greenland Ice Sheet surface melt and the mid-tropospheric atmospheric circulation. Climate Dyn., 36, 139–159, https://doi.org/10.1007/s00382-010-0772-8.
Fettweis, X., M. Tedesco, M. Van den Broeke, and J. Ettema, 2011b: Melting trends over the Greenland Ice Sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5, 359–375, https://doi.org/10.5194/tc-5-359-2011.
Fettweis, X., B. Franco, M. Tedesco, J. H. Van Angelen, J. T. M. Lenaerts, M. R. Van den Broeke, and H. Gallée, 2013: Estimating the Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013.
Fettweis, X., and Coauthors, 2017: Reconstructions of the 1900–2015 Greenland Ice Sheet surface mass balance using the regional climate MAR model. Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017.
Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.
Franco, B., X. Fettweis, and M. Erpicum, 2013: Future projections of the Greenland Ice Sheet energy balance driving the surface melt. Cryosphere, 7 (1), 1–18, https://doi.org/10.5194/tc-7-1-2013.
Gallagher, M. R., H. Chepfer, M. D. Shupe, and R. Guzman, 2020: Warm temperature extremes across Greenland connected to clouds. Geophys. Res. Lett., 47, e2019GL086059, https://doi.org/10.1029/2019GL086059.
Gallée, H., and G. Schayes, 1994: Development of a three-dimensional meso-g primitive equations model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Wea. Rev., 122, 671–685, https://doi.org/10.1175/1520-0493(1994)122,0671: DOATDM.2.0.CO;2.
Hahn, L., C. C. Ummenhofer, and Y.-O. Kwon, 2018: North Atlantic natural variability modulates emergence of widespread Greenland melt in a warming climate. Geophys. Res. Lett., 45, 9171–9178, https://doi.org/10.1029/2018GL079682.
Häkkinen, S., D. K. Hall, C. A. Shuman, D. L. Worthen, and N. E. Digirolamo, 2014: Greenland Ice Sheet melt from MODIS and associated atmospheric variability. Geophys. Res. Lett., 41, 1600–1607, https://doi.org/10.1002/2013GL059185.
Hall, D. K., J. C. Comiso, N. E. Digirolamo, C. A. Shuman, J. E. Box, and L. S. Koenig, 2013: Variability in the surface temperature and melt extent of the Greenland Ice Sheet from MODIS. Geophys. Res. Lett., 40, 2114–2120, https://doi.org/10.1002/grl.50240.
Hanna, E., and Coauthors, 2011: Greenland Ice Sheet surface mass balance 1870 to 2010 based on twentieth century reanalysis, and links with global climate forcing. J. Geophys. Res., 116, D24121, https://doi.org/10.1029/2011JD016387.
Hanna, E., X. Fettweis, and R. J. Hall, 2018: Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models. Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018.
Hanna, E., S. H. Mernild, J. Cappelen, and K. Steffen, 2012: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404.
Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 4847–4861, https://doi.org/10.1002/joc. 4673.
Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862–880, https://doi.org/10.1002/joc.3475.
Harper, J., N. Humphrey, W. T. Pfeffer, J. Brown, and X. Fettweis, 2012: Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491, 240–243, https://doi.org/10.1038/nature11566.
Hermann, M., L. Papritz, and H. Wernli, 2020: A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017. Wea. Climate Dyn., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584.
How, P., and Coauthors, 2021: Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep., 11, 4481, https://doi.org/10.1038/s41598-021-83509-1.
Howat, I. M., S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke, 2013: Brief Communication “Expansion of meltwater lakes on the Greenland ice sheet”. Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013.
Huai, B., M. R. Van den Broeke, and C. H. Reijmer, 2020: Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. Cryosphere, 14, 4181–4199, https://doi.org/10.5194/tc-14-4181-2020.
IPCC, 2022: Summary for policymakers. Climate Change 2022: Impacts, Adaptation and Vulnerability, H. O. Pörtner et al., Eds., Cambridge University Press, 3–33.
Kalnay, E., and Coauthors, 2018: The NCEP/NCAR 40-year reanalysis project. Renewable Energy, Vol. I, Routledge, 146–194.
Keegan, K. M., M. R. Albert, J. R. McConnell, and I. Baker, 2014: Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proc. Natl. Acad. Sci. USA, 111, 7964–7967.
Kendall, M. G., 1949: Rank and product-moment correlation. Biometrika, 36, 177–193, https://doi.org/10.1093/biomet/36.1-2.177.
Kjeldsen, K. K., and Coauthors, 2015: Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528, 396–400, https://doi.org/10.1038/nature16183.
Krasting, J. P., A. J. Broccoli, K. W. Dixon, and J. R. Lanzante, 2013: Future changes in Northern Hemisphere snowfall. J. Climate, 26, 7813–7828, https://doi.org/10.1175/JCLI-D-1200832.1.
Lemus-Canovas, M., J. A. Lopez-Bustins, J. Martin-Vide, and D. Royé, 2019: synoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environ. Model. Software, 118, 114–119, https://doi.org/10.1016/j.envsoft.2019.04.006.
Lim, Y.-K., S. D. Schubert, S. M. J. Nowicki, J. N. Lee, A. M. Molod, R. I. Cullather, B. Zhao, and I. Velicogna, 2016: Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: Insights from MERRA-2. Environ. Res. Lett., 11, 024002, https://doi.org/10.1088/1748-9326/11/2/024002.
MacFerrin, M., and Coauthors, 2019: Rapid expansion of Greenland’s low-permeability ice slabs. Nature, 573, 403–407, https://doi.org/10.1038/s41586-019-1550-3.
Mattingly, K. S., C. A. Ramseyer, J. J. Rosen, T. L. Mote, and R. Muthyala, 2016: Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett., 43, 9250–9258, https://doi.org/10.1002/2016GL070424.
Mattingly, K. S., T. L. Mote, and X. Fettweis, 2018: Atmospheric river impacts on Greenland Ice Sheet surface mass balance. J. Geophys. Res., 123, 8538–8560, https://doi.org/10.1029/2018JD028714.
Mattingly, K. S., T. L. Mote, X. Fettweis, D. Van As, K. Van Tricht, S. Lhermitte, C. Pettersen, and R. S. Fausto, 2020: Strong summer atmospheric rivers trigger Greenland Ice Sheet Melt through spatially varying surface energy balance and cloud regimes. J. Climate, 33, 6809–6832, https://doi.org/10.1175/JCLI-D-19-0835.1.
Mattingly, K. S., J. V. Turton, J. D. Wille, B. Noël, X. Fettweis, Å. K. Rennermalm, and T. L. Mote, 2023: Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers. Nat. Commun., 14, 1743, https://doi.org/10.1038/s41467-023-37434-8.
McGrath, D., W. Colgan, N. Bayou, A. Muto, and K. Steffen, 2013: Recent warming at summit, Greenland: Global context and implications. Geophys. Res. Lett., 40, 2091–2096, https://doi.org/10.1002/grl.50456.
McLeod, J. T., and T. L. Mote, 2016: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland Ice Sheet. Int. J. Climatol., 36, 1484–1499, https://doi.org/10.1002/joc.4440.
Mikkelsen, A. B., and Coauthors, 2016: Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere, 10, 1147–1159, https://doi.org/10.5194/tc-10-1147-2016.
Mioduszewski, J. R., A. K. Rennermalm, A. Hammann, M. Tedesco, E. U. Noble, J. C. Stroeve, and T. L. Mote, 2016: Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. J. Geophys. Res. Atmos., 121, 5095–5114, https://doi.org/10.1002/2015JD024550.
Mote, T. L., 1998: Mid-tropospheric circulation and surface melt on the Greenland Ice Sheet: I. Atmospheric teleconnections. Int. J. Climatol., 18, 111–129, https://doi.org/10.1002/(SICI)1097-0088(199802)18:2,111::AID-JOC227.3.0.CO;2-X.
Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas. 1904242116.
Mudryk, L., M. Santolaria-Otín, G. Krinner, M. Ménégoz, C. Derksen, C. Brutel-Vuilmet, M. Brady, and R. Essery, 2020: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020.
Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.
Niwano, M., A. Hashimoto, and T. Aoki, 2019: Cloud-driven modulations of Greenland Ice Sheet surface melt. Sci. Rep., 9, 10380, https://doi.org/10.1038/s41598-019-46152-5.
Noël, B., W. J. Van de Berg, S. Lhermitte, and M. R. Van den Broeke, 2019: Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123.
Oltmanns, M., F. Straneo, and M. Tedesco, 2019: Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions. Cryosphere, 13, 815–825, https://doi.org/10.5194/tc-13-815-2019.
Orsi, A. J., and Coauthors, 2017: The recent warming trend in North Greenland. Geophys. Res. Lett., 44, 6235–6243, https://doi.org/10.1002/2016GL072212.
Philipp, A., C. Beck, R. Huth, and J. Jacobeit, 2016: Development and comparison of circulation type classifications using the COST 733 dataset and software. Int. J. Climatol., 36, 2673–2691, https://doi.org/10.1002/joc.3920.
Poinar, K., I. Joughin, S. B. Das, M. D. Behn, J. T. M. Lenaerts, and M. R. van den Broeke, 2015: Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett., 42, 1800–1807, https://doi.org/10.1002/2015GL063192.
Preece, J. R., T. L. Mote, J. Cohen, L. J. Wachowicz, J. A. Knox, M. Tedesco, and G. J. Kooperman, 2023: Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat. Commun., 14, 3759, https://doi.org/10.1038/s41467-023-39466-6.
Pulliainen, J., and Coauthors, 2020: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0.
Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.
Räisänen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307–319, https://doi.org/10.1007/s00382-007-0289-y.
Rajewicz, J., and S. J. Marshall, 2014: Variability and trends in anticyclonic circulation over the Greenland Ice Sheet, 1948–2013. Geophys. Res. Lett., 41, 2842–2850, https://doi.org/10.1002/2014GL059255.
Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Envir., 3, 168, https://doi.org/10.1038/s43247-022-00498-3.
Rignot, E., and J. Mouginot, 2012: Ice flow in Greenland for the international polar year 2008–2009. Geophys. Res. Lett., 39, L11501, https://doi.org/10.1029/2012GL051634.
Ryan, J. C., L. C. Smith, D. Van As, S. W. Cooley, M. G. Cooper, L. H. Pitcher, and A. Hubbard, 2019: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv., 5, eaav3738, https://doi.org/10.1126/sciadv.aav3738.
Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934.
Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03. 004.
Slater, T., and Coauthors, 2021: Increased variability in Greenland Ice Sheet runoff from satellite observations. Nat. Commun., 12, 6069, https://doi.org/10.1038/s41467-021-26229-4.
Tedesco, M., M. Serreze, and X. Fettweis, 2008: Diagnosing the extreme surface melt event over southwestern Greenland in 2007. Cryosphere, 2, 159–166, https://doi.org/10.5194/tc-2-159-2008.
Tedesco, M., and X. Fettweis, 2020: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020.
Tedesco, M., T. Mote, X. Fettweis, E. Hanna, J. Jeyaratnam, J. F. Booth, R. Datta, and K. Briggs, 2016: Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun., 7, 11723, https://doi.org/10.1038/ncomms11723.
Tedesco, M., X. Fettweis, M. R. Van den Broeke, R. S. W. Van de Wal, C. J. P. P. Smeets, W. J. Van de Berg, M. C. Serreze, and J. E. Box, 2011: The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6, 014005, https://doi.org/10.1088/1748-9326/6/1/014005.
Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. E. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013.
Välisuo, I., T. Vihma, R. Pirazzini, and M. Schäfer, 2018: Interannual variability of atmospheric conditions and surface melt in Greenland in 2000–2014. J. Geophys. Res. Atmos., 123, 10 443–10 463, https://doi.org/10.1029/2018JD028445.
van den Broeke, M., P. Smeets, J. Ettema, C. Van der Veen, R. Van de Wal, and J. Oerlemans, 2008: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland Ice Sheet. Cryosphere, 2, 179–189, https://doi.org/10.5194/tc-2-179-2008.
Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland Ice Sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.
Vizcaíno, M., W. H. Lipscomb, W. J. Sacks, and M. van den Broeke, 2014: Greenland surface mass balance as simulated by the community earth system model. Part II: Twenty-first-century changes. J. Climate, 27, 215–226, https://doi.org/10.1175/JCLI-D12-00588.1.
Ward, J. L., M. G. Flanner, and E. Dunn-Sigouin, 2020: Impacts of Greenland block location on clouds and surface energy fluxes over the Greenland Ice Sheet. J. Geophys. Res. Atmos., 125, e2020JD033172, https://doi.org/10.1029/2020JD033172.
Wei, T., B. Noël, M. Ding, and Q. Yan, 2022: Spatiotemporal variations of extreme events in surface mass balance over Greenland during 1958–2019. Int. J. Climatol., 42, 8008–8023, https://doi.org/10.1002/joc.7689.
Williamson, C. J., and Coauthors, 2020: Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl. Acad. Sci. USA, 117, 5694–5705, https://doi.org/10.1073/pnas.1918412117.
Wilton, D. J., A. Jowett, E. Hanna, G. R. Bigg, M. R. Van den Broeke, X. Fettweis, and P. Huybrechts, 2017: High resolution (1 km) positive degree-day modelling of Greenland Ice Sheet surface mass balance, 1870–2012 using reanalysis data. J. Glaciol., 63, 176–193, https://doi.org/10.1017/jog.2016.133.