[en] Rationale: Oral appliances are second-line treatments after continuous positive airway pressure for obstructive sleep apnea (OSA) management. However, the need for oral appliance titration limits their use as a result of monitoring challenges to assess the treatment effect on OSA. Objectives: To assess the validity of mandibular jaw movement (MJM) automated analysis compared with polysomnography (PSG) and polygraphy (PG) in evaluating the effect of oral appliance treatment and the effectiveness of MJM monitoring for oral appliance titration at home in patients with OSA. Methods: This observational, prospective study included 135 patients with OSA eligible for oral appliance therapy. The primary outcome was the apnea-hypopnea index (AHI), measured through in-laboratory PSG/PG and MJM-based technology. Additionally, MJM monitoring at home was conducted at regular intervals during the titration process. The agreement between PSG/PG and MJM automated analysis was revaluated using Bland-Altman analysis. Changes in AHI during the home-based oral appliance titration process were evaluated using a generalized linear mixed model and a generalized estimating equation model. Results: The automated MJM analysis demonstrated strong agreement with PG in assessing AHI at the end of titration, with a median bias of 0.24/h (limits of agreement, -11.2 to 12.8/h). The improvement of AHI from baseline in response to oral appliance treatment was consistent across three evaluation conditions: in-laboratory PG (-59.6%; 95% confidence interval, -59.8% to -59.5%), in-laboratory automated MJM analysis (-59.2%; -65.2% to -52.2%), and at-home automated MJM analysis (-59.7%; -67.4% to -50.2%). Conclusions: Incorporating MJM automated analysis into the oral appliance titration process has the potential to optimize oral appliance therapy outcomes for OSA.
Research Center/Unit :
d‐BRU - Dental Biomaterials Research Unit - ULiège
Disciplines :
Human health sciences: Multidisciplinary, general & others
Author, co-author :
Pépin, Jean-Louis ; Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, U1300, Université Grenoble Alpes, Grenoble, France ; Laboratoire Exploration Fonctionnelle Cardio-Respiratoire (EFCR), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
Cistulli, Peter A ; Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia ; Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
Crespeigne, Etienne ; Laboratoire du sommeil, Centre Hospitalier Universitaire (CHU) Université catholique de Louvain (UCL), Site Sainte-Elisabeth, Namur, Belgium
Tamisier, Renaud ; Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, U1300, Université Grenoble Alpes, Grenoble, France ; Laboratoire Exploration Fonctionnelle Cardio-Respiratoire (EFCR), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
Bailly, Sébastien ; Laboratoire HP2, Institut National de la Santé et de la Recherche Médicale, U1300, Université Grenoble Alpes, Grenoble, France ; Laboratoire Exploration Fonctionnelle Cardio-Respiratoire (EFCR), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
Bruwier, Annick ; Université de Liège - ULiège > Dental biomaterials research unit (d-BRU)
Le-Dong, Nhat-Nam ; Sunrise, Namur, Belgium
Lavigne, Gilles ; Department of Oral Health, Faculty of Dental Medicine, University of Montréal, Montréal, Québec, Canada ; Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal (CIUSSS NIM) et Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
Malhotra, Atul ; University of California, San Diego, La Jolla, California, and
Martinot, Jean-Benoît ; Laboratoire du sommeil, Centre Hospitalier Universitaire (CHU) Université catholique de Louvain (UCL), Site Sainte-Elisabeth, Namur, Belgium ; Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain Bruxelles Woluwe, Bruxelles, Belgium
Language :
English
Title :
Mandibular Jaw Movement Automated Analysis for Oral Appliance Monitoring in Obstructive Sleep Apnea: A Prospective Cohort Study.
This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0. For commercial usage and reprints, please e-mail Diane Gern. Supported by the National Institutes of Health (A.M.), Canadian Institutes of Health Research Network for Canadian Oral Health Research (G.L.), Agence Nationale de la Recherche in the framework of the \u201CInvestissements d\u2019avenir\u201D program (ANR-15-IDEX-02), the \u201Ce-health and integrated care and trajectories medicine and MIAI artificial intelligence\u201D chairs of excellence from the Grenoble Alpes University Foundation (J.-L.P.), and MIAI Grenoble Alpes (ANR-19-P3IA-0003). Author Contributions: J.-L.P., J.-B.M., and N.-N.L.-D. designed the study. J.-L.P., J.-B.M., and E.C. conducted the research procedure and had full access to all study data. J.-L.P., J.-B.M., N.-N.L.-D., R.T., and S.B. performed data analysis. J.-L.P., J.-B.M., P.A.C., G.L., A.B., and A.M. have personally reviewed the data, verified the statistical methods employed for all analyses, and confirms an understanding of these analyses, that the methods are clearly described and that they are a fair way to report the results. J.-L.P., J.-B.M., and N.-N.L.-D. prepared the first draft of the manuscript. G.L., P.A.C., and A.B. reviewed and edited the final manuscript. All authors made the decision to submit the manuscript for publication and assume responsibility for the accuracy and completeness of the analyses and for the fidelity of this report to the study protocol.
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019;7: 687–698.
Pépin JL, Bailly S, Rinder P, Adler D, Szeftel D, Malhotra A, et al.; on Behalf of the medXcloud Group. CPAP therapy termination rates by OSA phenotype: a French nationwide database analysis. J Clin Med 2021;10:936.
Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 2015;11:773–827.
Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 2015;11:773–827.
Trzepizur W, Cistulli PA, Glos M, Vielle B, Sutherland K, Wijkstra PJ, et al. Health outcomes of continuous positive airway pressure versus mandibular advancement device for the treatment of severe obstructive sleep apnea: an individual participant data meta-analysis. Sleep 2021; 44:zsab015.
Phillips CL, Grunstein RR, Darendeliler MA, Mihailidou AS, Srinivasan VK, Yee BJ, et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 2013; 187:879–887.
Johal A, Hamoda MM, Almeida FR, Marklund M, Tallamraju H. The role of oral appliance therapy in obstructive sleep apnoea. Eur Respir Rev 2023;32:220257.
Pépin JL, Raymond N, Lacaze O, Aisenberg N, Forcioli J, Bonte E, et al. Heat-moulded versus custom-made mandibular advancement devices for obstructive sleep apnoea: a randomised non-inferiority trial. Thorax 2019;74:667–674.
Kelly JL, Ben Messaoud R, Joyeux-Faure M, Terrail R, Tamisier R, Martinot JB, et al. Diagnosis of sleep apnoea using a mandibular monitor and machine learning analysis: one-night agreement compared to in-home polysomnography. Front Neurosci 2022;16:726880.
Le-Dong NN, Martinot JB, Coumans N, Cuthbert V, Tamisier R, Bailly S, et al. Machine learning-based sleep staging in patients with sleep apnea using a single mandibular movement signal. Am J Respir Crit Care Med 2021;204:1227–1231.
Martinot JB, Le-Dong NN, Malhotra A, Pépin JL. Respiratory effort during sleep and prevalent hypertension in obstructive sleep apnoea. Eur Respir J 2023;61:2201486.
Pepin JL, Le-Dong NN, Cuthbert V, Coumans N, Tamisier R, Malhotra A, et al. Mandibular movements are a reliable noninvasive alternative to esophageal pressure for measuring respiratory effort in patients with sleep apnea syndrome. Nat Sci Sleep 2022;14:635–644.
Pépin JL, Letesson C, Le-Dong NN, Dedave A, Denison S, Cuthbert V, et al. Assessment of mandibular movement monitoring with machine learning analysis for the diagnosis of obstructive sleep apnea. JAMA Netw Open 2020;3:e1919657.
Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, et al. AASM Scoring Manual updates for 2017 (version 2.4). J Clin Sleep Med 2017;13:665–666.
Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al.; American Academy of Sleep Medicine; Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J Clin Sleep Med 2012;8:597–619.
American Academy of Sleep Medicine. International classification of sleep disorders. Darien, IL: American Academy of Sleep Medicine; 2014.
Segù M, Campagnoli G, Di Blasio M, Santagostini A, Pollis M, Levrini L. Pilot study of a new mandibular advancement device. Dent J (Basel) 2022;10:99.
Stasinopoulos MD, Rigby RA, Heller GZ, Voudouris V, De Bastiani F. Flexible regression and smoothing: using GAMLSS in R. Boca Raton, FL: Chapman and Hall/CRC; 2017.
Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J Stat Softw 2006;15:1–11.
Arel-Bundock V. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.12.0.9017; 2023 [accessed 2023 Aug 9]. Available from: https://vincentarelbundock.github.io/marginaleffects/.
Massie F, Mendes de Almeida D, Dreesen P, Thijs I, Vranken J, Klerkx S. An evaluation of the NightOwl home sleep apnea testing system. J Clin Sleep Med 2018;14:1791–1796.
Crowley KE, Rajaratnam SM, Shea SA, Epstein LJ, Czeisler CA, Lockley SW; Harvard Work Hours, Health and Safety Group. Evaluation of a single-channel nasal pressure device to assess obstructive sleep apnea risk in laboratory and home environments. J Clin Sleep Med 2013;9:109–116.
Ward KL, McArdle N, James A, Bremner AP, Simpson L, Cooper MN, et al. A comprehensive evaluation of a two-channel portable monitor to rule in obstructive sleep apnea. J Clin Sleep Med 2015;11:433–444.
Garg N, Rolle AJ, Lee TA, Prasad B. Home-based diagnosis of obstructive sleep apnea in an urban population. J Clin Sleep Med 2014;10:879–885.
Aarab G, Lobbezoo F, Hamburger HL, Naeije M. Effects of an oral appliance with different mandibular protrusion positions at a constant vertical dimension on obstructive sleep apnea. Clin Oral Investig 2010; 14:339–345.
Martinot JB, Le-Dong NN, Crespeigne E, Silkoff PE, Cuthbert V, Denison S, et al. Mandibular movement analysis to assess efficacy of oral appliance therapy in OSA. Chest 2018;154:1340–1347.
Bartolucci ML, Bortolotti F, Raffaelli E, D’Antò V, Michelotti A, Alessandri Bonetti G. The effectiveness of different mandibular advancement amounts in OSA patients: a systematic review and meta-regression analysis. Sleep Breath 2016;20: 911–919.
Anitua E, Durán-Cantolla J, Almeida GZ, Alkhraisat MH. Minimizing the mandibular advancement in an oral appliance for the treatment of obstructive sleep apnea. Sleep Med 2017;34:226–231.
Kushida CA, Morgenthaler TI, Littner MR, Alessi CA, Bailey D, Coleman J Jr, et al.; American Academy of Sleep. Practice parameters for the treatment of snoring and obstructive sleep apnea with oral appliances: an update for 2005. Sleep 2006;29:240–243.
Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 2015;11:773–827.