[en] The synthesis of dialkyl carbonates, versatile compounds with appli- cations in organic synthesis, pharmaceuticals, and polymers, has at- tracted considerable attention due to their environmentally benign nature. Here, we describe the selective bimolecular nucleophilic substitution (SN2) reaction between primary and secondary alkyl iodides with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-based carbon dioxide-binding organic liquids. We show that TBD is a great candi- date for bulk carbon dioxide and alcohol binding at 100°C. TBD- based carbonate salts are selective for SN2 processes, allowing them to work with highly reactive alkyl iodide while eliminating unwanted base quaternization either in acetonitrile or in bulk at both 21°Cand 65°C. The high reactivity of these TBD-based carbon dioxide-binding organic liquids toward backside SN2 processes at low temperature is explained by the presence of the TBD.H+ guanidinium, revealing a unique metal-free cation-assisted SN2 ion-pair process.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Delcorps, Juliette; University of Mons [UMons] - Center of Innovation and Research in Materials and Polymers [CIRMAP] - Laboratory of Polymeric and Composite Materials - Belgium
Rawat, Kuber Singh; University of Gent [UGent] - Center for Molecular Modeling - Belgium
Wells, Mathilde; University of Mons [UMons] - Faculty of Medicine and Pharmacy - Laboratory of Pharmaceutical Analysis - Belgium
Ben Ayed, Emna; University of Mons [UMons] - Center of Innovation and Research in Materials and Polymers [CIRMAP] - Laboratory of Polymeric and Composite Materials - Belgium
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Blankert, Bertrand; University of Mons [UMons] - Faculty of Medicine and Pharmacy - Laboratory of Pharmaceutical Analysis - Belgium
Gerbaux, Pascal; University of Mons [UMons] - Organic Synthesis and Mass Spectrometry Laboratory - Belgium
Van Speybroeck, Veronique; University of Gent [UGent] - Center for Molecular Modeling - Belgium
Coulembier, Olivier ; University of Mons [UMons] - Center of Innovation and Research in Materials and Polymers [CIRMAP] - Laboratory of Polymeric and Composite Materials - Belgium
Language :
English
Title :
Turning carbon dioxide into dialkyl carbonates through guanidinium-assisted SN2 ion-pair process
Publication date :
June 2024
Journal title :
Cell Reports. Physical Science
eISSN :
2666-3864
Publisher :
Elsevier BV
Pages :
102057
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
J.D. and E.B.A. acknowledge the support of the AXA Research Fund for the funding of this project. O.C. acknowledges support for his position as a senior research asso- ciate for the F.R.S.-FNRS of Belgium and AXA Professor in Chemistry. K.S.R. and V.V.S. acknowledge the research board of UGent (Bijzonder Onderzoeksfonds) through a Concerted Research Action (GOA010-17). The computational resources and services (Stevin Supercomputer Infrastructure) were provided by the VSC (Flem- ish Supercomputer Center), funded by UGent, Research Foundation Flanders, and the Flemish Government-department EWI. C.D. is the FNRS Research Director and thanks FNRS for financial support.
Aresta, M., Dibenedetto, A., Angelini, A., Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 114 (2014), 1709–1742, 10.1021/cr4002758.
Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Mac Dowell, N., Minx, J.C., Smith, P., Williams, C.K., The Technological and Economic Prospects for CO2 Utilization and Removal. Nature 575 (2019), 87–97, 10.1038/s41586-019-1681-6.
Liu, Y., Lu, X.-B., Current Challenges and Perspectives in CO2 - Based Polymers. Macromolecules 56 (2023), 1759–1777, 10.1021/acs.macromol.2c02483.
Li, Y.-N., He, L.-N., Diao, Z.-F., Yang, Z.-Z., Carbon Capture with Simultaneous Activation and Its Subsequent Transformation. Advances in Inorganic Chemistry, 66, 2014, Elsevier, 289–345, 10.1016/B978-0-12-420221-4.00009-3.
Centi, G., Signori, F., Green Carbon Dioxide: Advances in CO2 Utilization. 2014, Wiley).
Hu, B., Suib, S.L., Synthesis of Useful Compounds from CO2. Centi, G., Perathoner, S., (eds.) Green Carbon Dioxide, 2014, Wiley, 51–97, 10.1002/9781118831922.ch3.
Park, J.H., Jeon, J.Y., Lee, J.J., Jang, Y., Varghese, J.K., Lee, B.Y., Preparation of High-Molecular-Weight Aliphatic Polycarbonates by Condensation Polymerization of Diols and Dimethyl Carbonate. Macromolecules 46 (2013), 3301–3308, 10.1021/ma400360w.
Schäffner, B., Schäffner, F., Verevkin, S.P., Börner, A., Organic Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 110 (2010), 4554–4581, 10.1021/cr900393d.
Gryglewicz, S., Oko, F.A., Gryglewicz, G., Synthesis of Modern Synthetic Oils Based on Dialkyl Carbonates. Ind. Eng. Chem. Res. 42 (2003), 5007–5010, 10.1021/ie030322m.
Ono, Y., Catalysis in the Production and Reactions of Dimethyl Carbonate, an Environmentally Benign Building Block. Appl. Catal. Gen. 155 (1997), 133–166, 10.1016/S0926-860X(96)00402-4.
Chaban, V.V., Andreeva, N.A., Dialkyl Carbonates Enforce Energy Storage as New Dielectric Liquids. J. Mol. Liq., 367, 2022, 120454, 10.1016/j.molliq.2022.120454.
Chaban, V.V., Andreeva, N.A., Bernard, F.L., M Dos Santos, L., Einloft, S., Chemical similarity of dialkyl carbonates and carbon dioxide opens an avenue for novel greenhouse gas scavengers: cheap recycling and low volatility via experiments and simulations. Phys. Chem. Chem. Phys. 25 (2023), 9320–9335, 10.1039/D2CP06089B.
Tundo, P., Aricò, F., Reaction Pathways in Carbonates and Esters. ChemSusChem, 16, 2023, e202300748, 10.1002/cssc.202300748.
Shukla, K., Srivastava, V.C., Diethyl Carbonate: Critical Review of Synthesis Routes, Catalysts Used and Engineering Aspects. RSC Adv. 6 (2016), 32624–32645, 10.1039/C6RA02518H.
Zhou, Y., Fu, Z., Wang, S., Xiao, M., Han, D., Meng, Y., Electrochemical Synthesis of Dimethyl Carbonate from CO2 and Methanol over Carbonaceous Material Supported DBU in a Capacitor-like Cell Reactor. RSC Adv. 6 (2016), 40010–40016, 10.1039/C6RA04150G.
Jin Lee, H., Tung Nguyen, T., Vy Tran, A., Sik Kim, H., Suh, Y.-W., Baek, J., Jin Kim, Y., Engineering pKa Value of 3° Amine for Enhanced Production of Dialkyl Carbonate via Se-Catalyzed Oxidative Carbonylation. J. Ind. Eng. Chem. 123 (2023), 140–149, 10.1016/j.jiec.2023.03.030.
Cao, Y., Cheng, H., Ma, L., Liu, F., Liu, Z., Research Progress in the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Catal. Surv. Asia 16 (2012), 138–147, 10.1007/s10563-012-9140-5.
Kongpanna, P., Pavarajarn, V., Gani, R., Assabumrungrat, S., Techno-Economic Evaluation of Different CO2-Based Processes for Dimethyl Carbonate Production. Chem. Eng. Res. Des. 93 (2015), 496–510, 10.1016/j.cherd.2014.07.013.
Tomishige, K., Sakaihori, T., Sakai, S.i., Fujimoto, K., Dimethyl Carbonate Synthesis by Oxidative Carbonylation on Activated Carbon Supported CuCl2 Catalysts: Catalytic Properties and Structural Change. Appl. Catal. Gen. 181 (1999), 95–102, 10.1016/S0926-860X(98)00386-X.
Matsuzaki, T., Nakamura, A., Dimethyl Carbonate Synthesis and Other Oxidative Reactions Using Alkyl Nitrites. Catal. Surv. Asia. March 1997 (1997), 77–88.
Dabral, S., Schaub, T., The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 361 (2019), 223–246, 10.1002/adsc.201801215.
Omae, I., Recent Developments in Carbon Dioxide Utilization for the Production of Organic Chemicals. Coord. Chem. Rev. 256 (2012), 1384–1405, 10.1016/j.ccr.2012.03.017.
Dibenedetto, A., Angelini, A., Synthesis of Organic Carbonates. Advances in Inorganic Chemistry, 66, 2014, Elsevier, 25–81, 10.1016/B978-0-12-420221-4.00002-0.
Chaban, V.V., Andreeva, N.A., Moreira dos Santos, L., Einloft, S., Sodium chloride catalyzes valorization of carbon dioxide into dimethyl carbonate. J. Mol. Liq., 394, 2024, 123743, 10.1016/j.molliq.2023.123743.
Chaban, V.V., Exothermic barrier-free carboxylation of alkali methylates. The highest-yield synthesis of dialkyl carbonates out of alcohols and carbon dioxide rationalized and reformulated through quantum-chemical simulations. J. Mol. Liq., 391, 2023, 123244, 10.1016/j.molliq.2023.123244.
Jorapur, Y.R., Chi, D.Y., Synthesis of Symmetrical Organic Carbonates via Significantly Enhanced Alkylation of Metal Carbonates with Alkyl Halides/Sulfonates in Ionic Liquid. J. Org. Chem. 70 (2005), 10774–10777, 10.1021/jo051722h.
Verdecchia, M., Feroci, M., Palombi, L., Rossi, L., A Safe and Mild Synthesis of Organic Carbonates from Alkyl Halides and Tetrabutylammonium Alkyl Carbonates. J. Org. Chem. 67 (2002), 8287–8289, 10.1021/jo0259461.
Bratt, M.O., Taylor, P.C., Synthesis of Carbonates and Related Compounds from Carbon Dioxide via Methanesulfonyl Carbonates. J. Org. Chem. 68 (2003), 5439–5444, 10.1021/jo026753g.
Heldebrant, D.J., Yonker, C.R., Jessop, P.G., Phan, L., Organic Liquid CO2 Capture Agents with High Gravimetric CO2 Capacity. Energy Environ. Sci. 1 (2008), 487–493, 10.1039/b809533g.
Heldebrant, D.J., Jessop, P.G., Thomas, C.A., Eckert, C.A., Liotta, C.L., The Reaction of 1,8-Diazabicyclo[5.4.0]undec-7-Ene (DBU) with Carbon Dioxide. J. Org. Chem. 70 (2005), 5335–5338, 10.1021/jo0503759.
Khokarale, S.G., Mikkola, J.-P., Metal Free Synthesis of Ethylene and Propylene Carbonate from Alkylene Halohydrin and CO2 at Room Temperature. RSC Adv. 9 (2019), 34023–34031, 10.1039/C9RA06765E.
Luo, N., Ao, Y.F., Wang, D.X., Wang, Q.Q., Putting Anion-π Interactions at Work for Catalysis. Chem. Eur J., 28, 2022, e202103303, 10.1002/chem.202103303.
Harder, S., Streitwieser, A., Petty, J.T., von Schleyer, P., Ion Pair SN2 Reactions. Theoretical Study of Inversion and Retention Mechanisms. J. Am. Chem. Soc. 117 (1995), 3253–3259, 10.1021/ja00116a029.
Streitwieser, A., Choy, G.S.-C., Abu-Hasanayn, F., Theoretical Study of Ion Pair SN2 Reactions: Ethyl vs Methyl Reactivities and Extension to Higher Alkyls. J. Am. Chem. Soc. 119 (1997), 5013–5019, 10.1021/ja961673d.
Ebrahimi, A., Habibi, M., Amirmijani, A., The Study of Counterion Effect on the Reactivity of Nucleophiles in Some SN2 Reactions in Gas Phase and Solvent Media. J. Mol. Struct. Theochem 809 (2007), 115–124, 10.1016/j.theochem.2007.01.037.
Hamlin, T.A., Swart, M., Bickelhaupt, F.M., Nucleophilic Substitution (SN2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. ChemPhysChem 19 (2018), 1315–1330, 10.1002/cphc.201701363.
Fritz-Langhals, E., Unique Superbase TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-ene): From Catalytic Activity and One-Pot Synthesis to Broader Application in Industrial Chemistry. Org. Process Res. Dev. 26 (2022), 3015–3023, 10.1021/acs.oprd.2c00248.
Anderson, L.A., Franz, A.K., Real-Time Monitoring of Transesterification by 1H NMR Spectroscopy: Catalyst Comparison and Improved Calculation for Biodiesel Conversion. Energy Fuels 26 (2012), 6404–6410, 10.1021/ef301035s.
Trapasso, G., Salaris, C., Reich, M., Logunova, E., Salata, C., Kümmerer, K., Figoli, A., Aricò, F., A scale-up procedure to dialkyl carbonates; evaluation of their properties, biodegradability, and toxicity. Sustain. Chem. Pharm., 26, 2022, 100639, 10.1016/j.scp.2022.100639.
Weiberth, F.J., Yu, Y., Subotkowski, W., Pemberton, C., Demonstration on Pilot-Plant Scale of the Utility of 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) as a Catalyst in the Efficient Amidation of an Unactivated Methyl Ester. Org. Process Res. Dev. 16 (2012), 1967–1969, 10.1021/op300210j.
Sabot, C., Kumar, K.A., Meunier, S., Mioskowski, C., A Convenient Aminolysis of Esters Catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under Solvent-Free Conditions. Tetrahedron Lett. 48 (2007), 3863–3866, 10.1016/j.tetlet.2007.03.146.
Vigante, B., Rucins, M., Plotniece, A., Pajuste, K., Luntena, I., Cekavicus, B., Bisenieks, E., Smits, R., Duburs, G., Sobolev, A., Direct Aminolysis of Ethoxycarbonylmethyl 1,4-Dihydropyridine-3-Carboxylates. Molecules 20 (2015), 20341–20354, 10.3390/molecules201119697.
Hickey, J.L., Lin, S., One-pot Peptide Cleavage and Macrocyclization through Direct Amidation Using Triazabicyclodecene. Pept. Sci., 112(4), 2020, e24161, 10.1002/pep2.24161.
Van Guyse, J.F.R., Verjans, J., Vandewalle, S., De Bruycker, K., Du Prez, F.E., Hoogenboom, R., Full and Partial Amidation of Poly(methyl Acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules 52 (2019), 5102–5109, 10.1021/acs.macromol.9b00399.
Hoogenboom, R., Van Guyse, J., Amidation of Polymers Containing Ester Side Chains Using Functionalized Amines. US11332554B2 https://patents.google.com/patent/US11332554B2/en, 2022.
Mutlu, H., Meier, M.A.R., Unsaturated PA X,20 from Renewable Resources via Metathesis and Catalytic Amidation. Macromol. Chem. Phys. 210 (2009), 1019–1025, 10.1002/macp.200900045.
Guo, W., Gómez, J.E., Martínez-Rodríguez, L., Bandeira, N.A.G., Bo, C., Kleij, A.W., Metal-Free Synthesis of N-Aryl Amides Using Organocatalytic Ring-Opening Aminolysis of Lactones. ChemSusChem 10 (2017), 1969–1975, 10.1002/cssc.201700415.
Rankic, D.A., Stiff, C.M., am Ende, C.W., Humphrey, J.M., Protocol for the Direct Conversion of Lactones to Lactams Mediated by 1,5,7-Triazabicyclo[4.4.0]dec-5-ene: Synthesis of Pyridopyrazine-1,6-diones. J. Org. Chem. 82 (2017), 12791–12797, 10.1021/acs.joc.7b02079.
Horváth, A., Catalysis and Regioselectivity in the Michael Addition of Azoles. Kinetic vs. Thermodynamic Control. Tetrahedron Lett. 37 (1996), 4423–4426, 10.1016/0040-4039(96)00845-3.
Ghobril, C., Sabot, C., Mioskowski, C., Baati, R., TBD-Catalyzed Direct 5- and 6- Enolexo Aldolization of Ketoaldehydes. Eur. J. Org. Chem. 2008 (2008), 4104–4108, 10.1002/ejoc.200800539.
Kiesewetter, M.K., Scholten, M.D., Kirn, N., Weber, R.L., Hedrick, J.L., Waymouth, R.M., Cyclic Guanidine Organic Catalysts: What Is Magic About Triazabicyclodecene?. J. Org. Chem. 74 (2009), 9490–9496, 10.1021/jo902369g.
Baidya, M., Mayr, H., Nucleophilicities and Carbon Basicities of DBU and DBN. Chem. Commun. 15 (2008), 1792–1794, 10.1039/b801811a.
Munshi, P., Main, A.D., Linehan, J.C., Tai, C.-C., Jessop, P.G., Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: The Accelerating Effect of Certain Alcohols and Amines. J. Am. Chem. Soc. 124 (2002), 7963–7971, 10.1021/ja0167856.
Xia, Y., Shen, J., Alamri, H., Hadjichristidis, N., Zhao, J., Wang, Y., Zhang, G., Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(ethylene Oxide). Biomacromolecules 18 (2017), 3233–3237, 10.1021/acs.biomac.7b00891.
Khalil, A., Saba, S., Ribault, C., Vlach, M., Loyer, P., Coulembier, O., Cammas-Marion, S., Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers, 12, 2020, 1705, 10.3390/polym12081705.
Mathias, P.M., Afshar, K., Zheng, F., Bearden, M.D., Freeman, C.J., Andrea, T., Koech, P.K., Kutnyakov, I., Zwoster, A., Smith, A.R., et al. Improving the Regeneration of CO2-Binding Organic Liquids with a Polarity Change. Energy Environ. Sci., 6, 2013, 2233, 10.1039/c3ee41016a.
Gui, X., Tang, Z., Fei, W., Solubility of CO2 in Alcohols, Glycols, Ethers, and Ketones at High Pressures from (288.15 to 318.15. J. Chem. Eng. Data 56 (2011), 2420–2429, 10.1021/je101344v.
Phan, L., Chiu, D., Heldebrant, D.J., Huttenhower, H., John, E., Li, X., Pollet, P., Wang, R., Eckert, C.A., Liotta, C.L., Jessop, P.G., Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Ind. Eng. Chem. Res. 47 (2008), 539–545, 10.1021/ie070552r.
Sakai, S., Kobayashi, Y., Ishii, Y., Reaction of dialkyltin dialkoxides with carbon disulfide at higher temperature. Preparation of orthocarbonates. J. Org. Chem. 36 (1971), 1176–1180, 10.1021/jo00808a002.
Pérez, E.R., Santos, R.H.A., Gambardella, M.T.P., de Macedo, L.G.M., Rodrigues-Filho, U.P., Launay, J.-C., Franco, D.W., Activation of Carbon Dioxide by Bicyclic Amidines. J. Org. Chem. 69 (2004), 8005–8011, 10.1021/jo049243q.
Villiers, C., Dognon, J.-P., Pollet, R., Thuéry, P., Ephritikhine, M., An Isolated CO2 Adduct of a Nitrogen Base: Crystal and Electronic Structures. Angew. Chem. Int. Ed. 49 (2010), 3465–3468, 10.1002/anie.201001035.
Winstein, S., Clippinger, E., Fainberg, A.H., Heck, R., Robinson, G.C., Salt Effects and Ion Pairs in Solvolysis and Related Reactions. III.1 Common Ion Rate Depression and Exchange of Anions during Acetolysis2,3. J. Am. Chem. Soc. 78 (1956), 328–335, 10.1021/ja01583a022.
Contreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W., NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 7 (2011), 625–632, 10.1021/ct100641a.
Alfassi, Z.B., Huie, R.E., Milman, B.L., Neta, P., Electrospray Ionization Mass Spectrometry of Ionic Liquids and Determination of their Solubility in Water. Anal. Bioanal. Chem. 377 (2003), 159–164, 10.1007/s00216-003-2033-8.
Wang, P., Zakeeruddin, S., Grätzel, M., Kantlehner, W., Mezger, J., Stoyanov, E.V., Scherr, O., Novel Room Temperature Ionic Liquids of Hexaalkyl Substituted Guanidinium Salts for Dye-sensitized Solar Cells. Appl. Phys. A 79 (2004), 73–77, 10.1007/s00339-003-2505-x.
Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Grätzel, C., Zakeeruddin, S.M., Röthlisberger, U., Grätzel, M., Entropic Stabilization of Mixed A-cation ABX3 Metal Halide Perovskites for High Performance Perovskite Solar Cells. Energy Environ. Sci. 9 (2016), 656–662, 10.1039/C5EE03255E.
Mesias-Salazar, A., Rojas, R.S., Carrillo-Hermosilla, F., Martinez, J., Antinolo, A., Trofymchuk, O.S., Nachtigall, F.M., Santos, L.S., Daniliuc, C.G., Guanidinium Iodide Salts as Single Component Catalyst in CO2 to Epoxide Fixation. New J. Chem. 48 (2023), 105–111, 10.1039/D3NJ03959E.
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983), 55–63, 10.1016/0022-1759(83)90303-4.
Kanwar, J.R., Kanwar, R.K., Gut Health Immunomodulatory and Anti-Inflammatory Functions of Gut Enzyme Digested High Protein Micro-Nutrient Dietary Supplement-Enprocal. BMC Immunol., 10, 2009, 7, 10.1186/1471-2172-10-7.
Becke, A.D., Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 98 (1993), 5648–5652, 10.1063/1.464913.
Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 37 (1988), 785–789, 10.1103/PhysRevB.37.785.
Andrae, D., H-u-ermann, U., Dolg, M., Stoll, H., Preu-, H., Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 77 (1990), 123–141, 10.1007/BF01114537.
Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V.R., Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li–F. J. Comput. Chem. 4 (1983), 294–301, 10.1002/jcc.540040303.
Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 72 (1980), 650–654, 10.1063/1.438955.
Cossi, M., Rega, N., Scalmani, G., Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 24 (2003), 669–681, 10.1002/jcc.10189.
Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys., 132, 2010, 154104, 10.1063/1.3382344.
Grimme, S., Ehrlich, S., Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 32 (2011), 1456–1465, 10.1002/jcc.21759.
Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics. J. Mol. Graph. 14 (1996), 33–38, 10.1016/0263-7855(96)00018-5.
Legault, C.Y., CYLview, Version 1.0b; Universitéde Sherbrooke. http://www.cylview.org, 2009.