Buildings. Intergovernmental Panel on Climate Change (IPCC), (eds.) Climate change 2022 - mitigation of climate change, first ed., 2023, Cambridge University Press, 953–1048, 10.1017/9781009157926.011 URL https://www.cambridge.org/core/product/identifier/9781009157926%23c9/type/book_part.
Forman, C., Muritala, I.K., Pardemann, R., Meyer, B., Estimating the global waste heat potential. Renew Sustain Energy Rev 57 (2016), 1568–1579, 10.1016/j.rser.2015.12.192 URL https://www.sciencedirect.com/science/article/pii/S1364032115015750.
Koohi-Fayegh, S., Rosen, M.A., A review of energy storage types, applications and recent developments. J Energy Storage, 27, 2020, 101047, 10.1016/j.est.2019.101047 URL https://www.sciencedirect.com/science/article/pii/S2352152X19306012.
Jockenhöfer, H., Steinmann, W.-D., Bauer, D., Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 145 (2018), 665–676, 10.1016/j.energy.2017.12.087 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544217321308.
Astolfi, M., Aumann, R., Baresi, M., Batscha, D., van Buijten, J., Casella, F., et al. Thermal energy harvesting - the path to tapping into a large CO2-free European power source., 2022, Knowledge Center on Organic Rankine Cycle technology, 57 URL https://kcorc.org/en/committees/thermal-energy-harvesting-advocacy-group/.
Marina, A., Spoelstra, S., Zondag, H.A., Wemmers, A.K., An estimation of the European industrial heat pump market potential. Renew Sustain Energy Rev, 139, 2021, 110545, 10.1016/j.rser.2020.110545 URL https://www.sciencedirect.com/science/article/pii/S1364032120308297.
Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., De Paepe, M., Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sustain Energy Rev 47 (2015), 448–461, 10.1016/j.rser.2015.03.089 URL https://www.sciencedirect.com/science/article/pii/S1364032115002427.
Frate, G.F., Antonelli, M., Desideri, U., A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Appl Therm Eng 121 (2017), 1051–1058, 10.1016/j.applthermaleng.2017.04.127 URL https://linkinghub.elsevier.com/retrieve/pii/S135943111634114X.
Mercangöz, M., Hemrle, J., Kaufmann, L., Z'Graggen, A., Ohler, C., Electrothermal energy storage with transcritical CO2 cycles. Energy 45:1 (2012), 407–415, 10.1016/j.energy.2012.03.013 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544212002046.
Steinmann, W.D., The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy 69 (2014), 543–552, 10.1016/j.energy.2014.03.049 URL http://www.sciencedirect.com/science/article/pii/S0360544214003132.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage. Energy Convers Manage, 208, 2020, 112530, 10.1016/j.enconman.2020.112530 URL https://linkinghub.elsevier.com/retrieve/pii/S0196890420300662.
Weitzer, M., Müller, D., Karl, J., Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency. Renew Energy 199 (2022), 720–732, 10.1016/j.renene.2022.08.143 URL https://www.sciencedirect.com/science/article/pii/S0960148122013222.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria economic analysis of a Pumped Thermal Electricity Storage (PTES) with thermal integration. Front Energy Res, 8, 2020, 53, 10.3389/fenrg.2020.00053 URL https://www.frontiersin.org/article/10.3389/fenrg.2020.00053/full.
Weitzer, M., Müller, D., Steger, D., Charalampidis, A., Karellas, S., Karl, J., Organic flash cycles in Rankine-based Carnot batteries with large storage temperature spreads. Energy Convers Manage, 255, 2022, 115323, 10.1016/j.enconman.2022.115323 URL https://www.sciencedirect.com/science/article/pii/S0196890422001194.
Lu, P., Luo, X., Wang, J., Chen, J., Liang, Y., Yang, Z., et al. Thermodynamic analysis and evaluation of a novel composition adjustable Carnot battery under variable operating scenarios. Energy Convers Manage, 269, 2022, 116117, 10.1016/j.enconman.2022.116117 URL https://www.sciencedirect.com/science/article/pii/S0196890422009013.
Zhang, M., Shi, L., Hu, P., Pei, G., Shu, G., Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency. J Energy Storage, 57, 2023, 106234, 10.1016/j.est.2022.106234 URL https://www.sciencedirect.com/science/article/pii/S2352152X2202223X.
Bellos, E., Thermodynamic analysis of a Carnot battery unit with double exploitation of a waste heat source. Energy Convers Manage, 299, 2024, 117844, 10.1016/j.enconman.2023.117844 URL https://www.sciencedirect.com/science/article/pii/S0196890423011901.
Dumont, O., Lemort, V., Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery. Energy, 211, 2020, 118963, 10.1016/j.energy.2020.118963 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544220320703.
Xia, R., Wang, Z., Cao, M., Jiang, Y., Tang, H., Ji, Y., et al. Comprehensive performance analysis of cold storage Rankine Carnot batteries: Energy, exergy, economic, and environmental perspectives. Energy Convers Manage, 293, 2023, 117485, 10.1016/j.enconman.2023.117485 URL https://www.sciencedirect.com/science/article/pii/S0196890423008312.
Hu, S., Yang, Z., Li, J., Duan, Y., Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios. Energy Convers Manage, 236, 2021, 114072, 10.1016/j.enconman.2021.114072 URL https://linkinghub.elsevier.com/retrieve/pii/S019689042100248X.
Fan, R., Xi, H., Energy, exergy, economic (3E) analysis, optimization and comparison of different Carnot battery systems for energy storage. Energy Convers Manage, 252, 2022, 115037, 10.1016/j.enconman.2021.115037 URL https://www.sciencedirect.com/science/article/pii/S0196890421012139.
Zhang, Y., Xu, L., Li, J., Zhang, L., Yuan, Z., Technical and economic evaluation, comparison and optimization of a Carnot battery with two different layouts. J Energy Storage, 55, 2022, 105583, 10.1016/j.est.2022.105583 URL https://www.sciencedirect.com/science/article/pii/S2352152X22015717.
Yu, X., Qiao, H., Yang, B., Zhang, H., Thermal-economic and sensitivity analysis of different Rankine-based Carnot battery configurations for energy storage. Energy Convers Manage, 283, 2023, 116959, 10.1016/j.enconman.2023.116959 URL https://www.sciencedirect.com/science/article/pii/S0196890423003059.
Zhang, X., Sun, Y., Zhao, W., Li, C., Xu, C., Sun, H., et al. The Carnot batteries thermally assisted by the steam extracted from thermal power plants: A thermodynamic analysis and performance evaluation. Energy Convers Manage, 297, 2023, 117724, 10.1016/j.enconman.2023.117724 URL https://www.sciencedirect.com/science/article/pii/S0196890423010701.
Qiao, H., Yu, X., Yang, B., Working fluid design and performance optimization for the heat pump-organic Rankine cycle Carnot battery system based on the group contribution method. Energy Convers Manage, 293, 2023, 117459, 10.1016/j.enconman.2023.117459 URL https://www.sciencedirect.com/science/article/pii/S0196890423008051.
Wang, Z., Xia, R., Jiang, Y., Cao, M., Ji, Y., Han, F., Evaluation and optimization of an engine waste heat assisted Carnot battery system for ocean-going vessels during harbor stays. J Energy Storage, 73, 2023, 108866, 10.1016/j.est.2023.108866 URL https://www.sciencedirect.com/science/article/pii/S2352152X23022636.
Staub, S., Bazan, P., Braimakis, K., Müller, D., Regensburger, C., Scharrer, D., et al. Reversible heat pump–organic rankine cycle systems for the storage of renewable electricity. Energies, 11(6), 2018, 1352, 10.3390/en11061352 URL https://www.mdpi.com/1996-1073/11/6/1352.
Reddy, K.S., Mudgal, V., Mallick, T.K., Review of latent heat thermal energy storage for improved material stability and effective load management. J Energy Storage 15 (2018), 205–227, 10.1016/j.est.2017.11.005 URL https://www.sciencedirect.com/science/article/pii/S2352152X1730227X.
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 53:6 (2014), 2498–2508.
Frate, G.F., Ferrari, L., Desideri, U., Analysis of suitability ranges of high temperature heat pump working fluids. Appl Therm Eng 150 (2019), 628–640, 10.1016/j.applthermaleng.2019.01.034 URL https://www.sciencedirect.com/science/article/pii/S1359431118353602.
Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., Bertsch, S.S., High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 152 (2018), 985–1010, 10.1016/j.energy.2018.03.166 URL https://www.sciencedirect.com/science/article/pii/S0360544218305759.
Ommen, T., Jensen, J.K., Markussen, W.B., Reinholdt, L., Elmegaard, B., Technical and economic working domains of industrial heat pumps: Part 1 – Single stage vapour compression heat pumps. Int J Refrig 55 (2015), 168–182, 10.1016/j.ijrefrig.2015.02.012 URL https://www.sciencedirect.com/science/article/pii/S0140700715000444.
Jiang, J., Hu, B., Wang, R.Z., Deng, N., Cao, F., Wang, C.-C., A review and perspective on industry high-temperature heat pumps. Renew Sustain Energy Rev, 161, 2022, 112106, 10.1016/j.rser.2022.112106 URL https://www.sciencedirect.com/science/article/pii/S1364032122000351.
Maraver, D., Royo, J., Lemort, V., Quoilin, S., Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Appl Energy 117 (2014), 11–29, 10.1016/j.apenergy.2013.11.076 URL https://www.sciencedirect.com/science/article/pii/S0306261913009859.
Smith, C., Nicholls, Z., Armour, K., Collins, W., Forster, P., Meinshausen, M., et al. The earth's energy budget, climate feedbacks, and climate sensitivity supplementary material. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., (eds.) Climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, 2021 Available from https://www.ipcc.ch/, Type: Book Section.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:2 (2002), 182–197.
Coppitters, D., Tsirikoglou, P., Paepe, W.D., Kyprianidis, K., Kalfas, A., Contino, F., RHEIA: Robust design optimization of renewable Hydrogen and dErIved energy cArrier systems. J Open Source Softw, 7(75), 2022, 4370, 10.21105/joss.04370 URL https://joss.theoj.org/papers/10.21105/joss.04370.
Blank, J., Deb, K., Pymoo: Multi-objective optimization in python. IEEE Access 8 (2020), 89497–89509, 10.1109/ACCESS.2020.2990567 URL https://ieeexplore.ieee.org/document/9078759.
Voll, P., Jennings, M., Hennen, M., Shah, N., Bardow, A., The optimum is not enough: A near-optimal solution paradigm for energy systems synthesis. Energy 82 (2015), 446–456, 10.1016/j.energy.2015.01.055 URL https://www.sciencedirect.com/science/article/pii/S0360544215000791.
Dumont, O., Quoilin, S., Lemort, V., Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building. Int J Refrig 54 (2015), 190–203, 10.1016/j.ijrefrig.2015.03.008 URL https://linkinghub.elsevier.com/retrieve/pii/S0140700715000638.
Murthy, A.A., Subiantoro, A., Norris, S., Fukuta, M., A review on expanders and their performance in vapour compression refrigeration systems. Int J Refrig 106 (2019), 427–446, 10.1016/j.ijrefrig.2019.06.019 URL https://www.sciencedirect.com/science/article/pii/S0140700719302701.
Francesconi, M., Briola, S., Antonelli, M., A review on two-phase volumetric expanders and their applications. Appl Sci, 12(20), 2022, 10328, 10.3390/app122010328 URL https://www.mdpi.com/2076-3417/12/20/10328.