[en] Planetary magnetic fields control energetic particles in their space environments and guide particles to polar atmospheres, where they produce stunning auroral forms. As revealed by spacecraft measurements of the Earth, Saturn and Jupiter, the pathways of energetic particles to these planetary polar atmospheres are diverse, suggesting that there are different coupling processes between their ionospheres and magnetospheres. These planets all have dipole-dominated magnetic fields, rotate in the same direction and are blown by the solar wind, but what controls the global-scale patterns of energy dissipation remains unknown. Based on three-dimensional magnetohydrodynamics calculations, we reveal that the competition between planet-driven plasma rotation and solar-wind-driven flow convection determines the structure of global auroral morphologies. This unified theoretical framework can reproduce polar aurora from the Earth-type to the Jupiter-type based on transition states that are strikingly consistent with the highly variable aurora patterns of Saturn. This generalized description of fundamental magnetospheric physics, proposed here and validated by decades-long observations, is applicable to exoplanetary systems.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Zhang, B.; NWU-HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences, University of Hong Kong, Hong Kong
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; NWU-HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences, University of Hong Kong, Hong Kong ; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Brambles, O.J.; Brambles Consulting, Preston, United Kingdom
Delamere, P.A.; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, United States
Lotko, W. ; Thayer School of Engineering, Dartmouth College, Hanover, United States ; National Center for Atmospheric Research, Boulder, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Chen, J. ; NWU-HKU Joint Centre of Earth and Planetary Sciences, Department of Earth Sciences, University of Hong Kong, Hong Kong
Sorathia, K.A.; Applied Physics Laboratory, Johns Hopkins University, Laurel, United States
Merkin, V.G. ; Applied Physics Laboratory, Johns Hopkins University, Laurel, United States
Lyon, J.G. ; Gamera Consulting, Hanover, United States
Language :
English
Title :
A unified framework for global auroral morphologies of different planets
NSCF - National Natural Science Foundation of China F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work is supported by the Excellent Young Scientists Fund (Hong Kong and Macau) of the National Natural Science Foundation of China (Grant Nos. 41922060, 42074211 and 42374212) and Research Grants Council (RGC) General Research Fund (Grant Nos. 17308221, 17308520, 17315222 and 17308723).
C.A. Jones Planetary magnetic fields and fluid dynamos Annu. Rev. Fluid Mech. 2011 43 583 614 2011AnRFM.43.583J 2768025 10.1146/annurev-fluid-122109-160727
G. Hallinan et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence Nature 2015 523 568 571 2015Natur.523.568H 10.1038/nature14619
M.M. Kao G. Hallinan J.S. Pineda D. Stevenson A. Burgasser The strongest magnetic fields on the coolest brown dwarfs Astrophys. J. Suppl. Ser. 2018 237 25 2018ApJS.237..25K 10.3847/1538-4365/aac2d5
D.J. Stevenson Interiors of the giant planets Annu. Rev. Earth Planet. Sci. 1982 10 257 1982AREPS.10.257S 10.1146/annurev.ea.10.050182.001353
D.J. Stevenson Planetary magnetic fields Earth Planet. Sci. Lett. 2003 208 1 11 2003E&PSL.208..1S 10.1016/S0012-821X(02)01126-3
T. Guillot The interiors of giant planets: models and outstanding questions Annu. Rev. Earth Planet. Sci. 2005 33 493 530 2005AREPS.33.493G 10.1146/annurev.earth.32.101802.120325
G. Schubert K.M. Soderlund Planetary magnetic fields: observations and models Phys. Earth Planet. Inter. 2011 187 92 108 2011PEPI.187..92S 10.1016/j.pepi.2011.05.013
S. Liu D. Kong J. Yan Possible approach to detecting the mysterious Saturnian convective dynamo through gravitational sounding Astron. Astrophys. 2020 644 A48 2020A&A..644A.48L 10.1051/0004-6361/202038906
P.D. Boakes et al. On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere Ann. Geophys. 2008 26 2759 2769 2008AnGeo.26.2759B 10.5194/angeo-26-2759-2008
S.M. Imber S.E. Milan B. Hubert The auroral and ionospheric flow signatures of dual lobe reconnection Ann. Geophys. 2006 24 3115 3129 2006AnGeo.24.3115I 10.5194/angeo-24-3115-2006
Fear, R. C. Milan, S. E. The IMF dependence of the local time of transpolar arcs: implications for formation mechanism. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2011JA017209 (2012).
S.E. Milan M. Lester S.W.H. Cowley M. Brittnacher Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field Ann. Geophys. 2000 18 436 444 2000AnGeo.18.436M 10.1007/s00585-000-0436-9
Milan, S. E., Provan, G. Hubert, B. Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2006JA011642 (2007).
S. Wing M. Gkioulidou J.R. Johnson P.T. Newell C.-P. Wang Auroral particle precipitation characterized by the substorm cycle J. Geophys. Res.: Space Phys. 2013 118 1022 1039 2013JGRA.118.1022W 10.1002/jgra.50160
D.A. Hardy M.S. Gussenhoven E. Holeman A statistical model of auroral electron precipitation J. Geophys. Res.: Space Phys. 1985 90 4229 4248 1985JGR..90.4229H 10.1029/JA090iA05p04229
J.-C. Gérard et al. Saturn’s auroral morphology and activity during quiet magnetospheric conditions J. Geophys. Res.: Space Phys. 2006 111 A12210 2006JGRA.11112210G 10.1029/2006JA011965
D. Grodent J.-C. Gérard S.W.H. Cowley E.J. Bunce J.T. Clarke Variable morphology of Saturn’s southern ultraviolet aurora J. Geophys. Res.: Space Phys. 2005 110 A07215 2005JGRA.110.7215G 10.1029/2004JA010983
J.F. Carbary The morphology of Saturn’s ultraviolet aurora J. Geophys. Res.: Space Phys. 2012 117 A06210 2012JGRA.117.6210C 10.1029/2012JA017670
Clarke, J. T. in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets (eds Keiling, A. et al.) 113–122 (AGU, 2012).
T. Greathouse et al. Local time dependence of Jupiter’s polar auroral emissions observed by Juno UVS J. Geophys. Res.: Planets 2021 126 2021JGRE.12606954G 10.1029/2021JE006954
A.H. Sulaiman et al. Jupiter’s low-altitude auroral zones: fields, particles, plasma waves, and density depletions J. Geophys. Res.: Space Phys. 2022 127 2022JGRA.12730334S 10.1029/2022JA030334
Hill, T. W. in Solar-Terrestrial Physics: Principles and Theoretical Foundations (eds R. L. Carovillano & J. M. Forbes) 261–302 (Springer, 1983).
Borovsky, J. E. The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2007JA012646 (2008).
J. Isbell A.J. Dessler J.H. Waite Jr. Magnetospheric energization by interaction between planetary spin and the solar wind J. Geophys. Res.: Space Phys. 1984 89 10716 10722 1984JGR..8910716I 10.1029/JA089iA12p10716
C.R. Chappell T.E. Moore J.H. Waite Jr The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere J. Geophys. Res.: Space Phys. 1987 92 5896 5910 1987JGR..92.5896C 10.1029/JA092iA06p05896
P.A. Delamere et al. Solar wind and internally driven dynamics: influences on magnetodiscs and auroral responses Space Sci. Rev. 2015 187 51 97 2015SSRv.187..51D 10.1007/s11214-014-0075-1
C.T. Russell The solar wind interaction with the Earth’s magnetosphere: a tutorial IEEE Trans. Plasma Sci. 2000 28 1818 1830 2000ITPS..28.1818R 10.1109/27.902211
McComas, D. J. & Bagenal, F. Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031078 (2007).
Cowley, S. W. H. et al. Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2004JA010796 (2005).
J.N. Leboeuf T. Tajima C.F. Kennel J.M. Dawson Global simulation of the time-dependent magnetosphere Geophys. Res. Lett. 1978 5 609 612 1978GeoRL..5.609L 10.1029/GL005i007p00609
J.G. Lyon S.H. Brecht J.D. Huba J.A. Fedder P.J. Palmadesso Computer simulation of a geomagnetic substorm Phys. Rev. Lett. 1981 46 1038 1041 1981PhRvL.46.1038L 10.1103/PhysRevLett.46.1038
J. Raeder J. Berchem M. Ashour-Abdalla The geospace environment modeling grand challenge: results from a global geospace circulation model J. Geophys. Res.: Space Phys. 1998 103 14787 14797 1998JGR..10314787R 10.1029/98JA00014
T. Tanaka The state transition model of the substorm onset J. Geophys. Res.: Space Phys. 2000 105 21081 21096 2000JGR..10521081T 10.1029/2000JA900061
White, W. et al. in Space Weather (eds Song. P. et al.) 229–240 (AGU, 2001).
Hu, Y. Q., Guo, X. C. & Wang, C. On the ionospheric and reconnection potentials of the Earth: results from global MHD simulations. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2006JA012145 (2007).
Janhunen, P., Koskinen, K. & Pulkinen, T. A new global ionosphere–magnetosphere coupling simulation utilizing locally varying time step. In Proc. International Conference on Substorms (eds Rolfe, E. J. and Kaldeich, B.) 205–210 (ESA, 1996).
B. Zhang W. Lotko O. Brambles M. Wiltberger J. Lyon Electron precipitation models in global magnetosphere simulations J. Geophys. Res.: Space Phys. 2015 120 1035 1056 2015JGRA.120.1035Z 10.1002/2014JA020615
J.Y. Choe D.B. Beard E.C. Sullivan Precise calculation of the magnetosphere surface for a tilted dipole Planet. Space Sci. 1973 21 485 498 1973P&SS..21.485C 10.1016/0032-0633(73)90045-7
J.R. Spreiter A.Y. Alksne Plasma flow around the magnetosphere Rev. Geophys. 1969 7 11 50 1969RvGeo..7..11S 10.1029/RG007i001p00011
S.P. Joy et al. Probabilistic models of the Jovian magnetopause and bow shock locations J. Geophys. Res.: Space Phys. 2002 107 1309 2002JGRA.107.1309J 10.1029/2001JA009146
B. Zhang et al. How Jupiter’s unusual magnetospheric topology structures its aurora Sci. Adv. 2021 7 2021SciA..7.1204Z 4216434 10.1126/sciadv.abd1204
Z. Yao et al. Revealing the source of Jupiter’s X-ray auroral flares Sci. Adv. 2021 7 2021SciA..7.851Y 10.1126/sciadv.abf0851
A. Keiling J.R. Wygant C.A. Cattell F.S. Mozer C.T. Russell The global morphology of wave Poynting flux: powering the aurora Science 2003 299 383 386 2003Sci..299.383K 10.1126/science.1080073
A. Keiling The dynamics of the Alfvénic oval J. Atmos. Sol.-Terr. Phys. 2021 219 10.1016/j.jastp.2021.105616
Zhang, B. et al. Magnetotail origins of auroral Alfvénic power. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2012JA017680 (2012).
R. Ebert F. Bagenal D. McComas C. Fowler A survey of solar wind conditions at 5 au: a tool for interpreting solar wind-magnetosphere interactions at Jupiter Front. Astron. Space Sci. 2014 1 4 2014FrASS..1..4E 10.3389/fspas.2014.00004
E. Echer Solar wind and interplanetary shock parameters near Saturn’s orbit (∼10 au) Planet. Space Sci. 2019 165 210 220 2019P&SS.165.210E 10.1016/j.pss.2018.10.006
Merkin, V. G. et al. Global MHD simulations of the strongly driven magnetosphere: modeling of the transpolar potential saturation. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2004JA010993 (2005).
Siscoe, G., Raeder, J. & Ridley, A. J. Transpolar potential saturation models compared. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2003JA010318 (2004).
T.W. Hill Inertial limit on corotation J. Geophys. Res.: Space Phys. 1979 84 6554 6558 1979JGR..84.6554H 10.1029/JA084iA11p06554
B. Zhang et al. How does mass loading impact local versus global control on dayside reconnection? Geophys. Res. Lett. 2016 43 1837 1844 2016GeoRL.43.1837Z 10.1002/2016GL068005
A. Salveter J. Saur G. Clark B.H. Mauk Jovian auroral electron precipitation budget—a statistical analysis of diffuse, mono-energetic, and broadband auroral electron distributions J. Geophys. Res.: Space Phys. 2022 127 2022JGRA.12730224S 10.1029/2021JA030224
B.Z. Zhang et al. GAMERA: a three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries Astrophys. J. Suppl. Ser. 2019 244 35 2019ApJS.244..35L 10.3847/1538-4365/ab3a4c
O.J. Brambles et al. Magnetosphere sawtooth oscillations induced by ionospheric outflow Science 2011 332 1183 1186 2011Sci..332.1183B 10.1126/science.1202869
M. Wiltberger W. Lotko J.G. Lyon P. Damiano V. Merkin Influence of cusp O+ outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere J. Geophys. Res.: Space Phys. 2010 115 7 10.1029/2010JA015579
J.G. Lyon J.A. Fedder C.M. Mobarry The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code J. Atmos. Sol.-Terr. Phys. 2004 66 1333 1350 2004JASTP.66.1333L 10.1016/j.jastp.2004.03.020
J.E. Ouellette B.N. Rogers M. Wiltberger J.G. Lyon Magnetic reconnection at the dayside magnetopause in global Lyon–Fedder–Mobarry simulations J. Geophys. Res.: Space Phys. 2010 115 A08222 2010JGRA.115.8222O 10.1029/2009JA014886
B. Zhang et al. Transition from global to local control of dayside reconnection from ionospheric-sourced mass loading J. Geophys. Res.: Space Phys. 2017 122 9474 9488 2017JGRA.122.9474Z 10.1002/2016JA023646
B. Zhang O.J. Brambles W. Lotko J.G. Lyon Is nightside outflow required to induce magnetospheric sawtooth oscillations Geophys. Res. Lett. 2020 47 2020GeoRL.4786419Z 10.1029/2019GL086419
Baumjohann, W. & Treumann, R. Basic Space Plasma Physics (World Scientific, 1996).
W.J. Burke D.R. Weimer N.C. Maynard Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials J. Geophys. Res.: Space Phys. 1999 104 9989 9994 1999JGR..104.9989B 10.1029/1999JA900031
J.R. Spreiter A.L. Summers A.Y. Alksne Hydromagnetic flow around the magnetosphere Planet. Space Sci. 1966 14 223 253 1966P&SS..14.223S 10.1016/0032-0633(66)90124-3
Bagenal, F. Delamere, P. A. Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2010JA016294 (2011).
Smith, H. T. et al. Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2009JA015184 (2010).
R.E. Lopez The integrated dayside merging rate is controlled primarily by the solar wind J. Geophys. Res.: Space Phys. 2016 121 4435 4445 2016JGRA.121.4435L 10.1002/2016JA022556
R.L. Guo et al. A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft Astrophys. J. Lett. 2021 919 L25 2021ApJ..919L.25G 10.3847/2041-8213/ac26b5
Mauk, B. H. et al. in Saturn from Cassini-Huygens (eds Dougherty, M. K. et al.) 281–331 (Springer, 2009).
B. Palmaerts et al. A long-lasting auroral spiral rotating around Saturn’s pole Geophys. Res. Lett. 2020 47 2020GeoRL.4788810P 10.1029/2020GL088810
V. Hue et al. Detection and characterization of circular expanding UV-emissions observed in Jupiter’s polar auroral regions J. Geophys. Res.: Space Phys. 2021 126 2021JGRA.12628971H 10.1029/2020JA028971