Cognitive motor dissociation; Coma; Communication; Electroencephalography; Functional magnetic resonance imaging; Head injury; Neural repair; Critical Care and Intensive Care Medicine; Neurology (clinical)
Abstract :
[en] [en] BACKGROUND: We developed a gap analysis that examines the role of brain-computer interfaces (BCI) in patients with disorders of consciousness (DoC), focusing on their assessment, establishment of communication, and engagement with their environment.
METHODS: The Curing Coma Campaign convened a Coma Science work group that included 16 clinicians and neuroscientists with expertise in DoC. The work group met online biweekly and performed a gap analysis of the primary question.
RESULTS: We outline a roadmap for assessing BCI readiness in patients with DoC and for advancing the use of BCI devices in patients with DoC. Additionally, we discuss preliminary studies that inform development of BCI solutions for communication and assessment of readiness for use of BCIs in DoC study participants. Special emphasis is placed on the challenges posed by the complex pathophysiologies caused by heterogeneous brain injuries and their impact on neuronal signaling. The differences between one-way and two-way communication are specifically considered. Possible implanted and noninvasive BCI solutions for acute and chronic DoC in adult and pediatric populations are also addressed.
CONCLUSIONS: We identify clinical and technical gaps hindering the use of BCI in patients with DoC in each of these contexts and provide a roadmap for research aimed at improving communication for adults and children with DoC, spanning the clinical spectrum from intensive care unit to chronic care.
Disciplines :
Neurosciences & behavior
Author, co-author :
Schiff, Nicholas D ; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA. nds2001@med.cornell.edu
Diringer, Michael; Departments of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
Diserens, Karin; Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
Edlow, Brian L; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Hill, N Jeremy; National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA ; Electrical & Computer Engineering Department, State University of New York at Albany, Albany, NY, USA
Hochberg, Leigh R; Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Rehabilitation Research & Development Service, Providence VA Medical Center, Providence, RI, USA ; School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA ; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Ismail, Fatima Y; Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates ; Department of Neurology, Adjunct Johns Hopkins University School of Medicine, Baltimore, MD, USA
Meyer, Ivo A; Neurology and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland ; Centre for Advanced Research in Sleep Medicine and Integrated Trauma Centre, Integrated University Health and Social Services Centre (CIUSSS) du Nord-de-L'Île-de-Montréal, Montreal, QC, Canada
Mikell, Charles B; Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY, USA
Mofakham, Sima; Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY, USA ; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
Molteni, Erika; School of Biomedical Engineering and Imaging Sciences, and Centre for Medical Engineering, King's College London, London, UK
Polizzotto, Leonard; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
Shah, Sudhin A; Department of Radiology, Weill Cornell Medical College, New York, NY, USA
Stevens, Robert D; Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
Thengone, Daniel; Brown University, Providence, RI, USA
and the Curing Coma Campaign and its Contributing Members
The authors acknowledge the following sources: the NIH Director’s Office (DP2HD101400) and Chen Institute MGH Research Scholar Award (B.L.E.), F.R.S-FNRS (OG), IAM’s contribution to this paper was made during his tenure as a research assistant in Montreal, Canada, funded by the Gianni Biaggi de Blasys Foundation, Lausanne, Switzerland, NJH acknowledges support from NIH (NIBIB) P41EB018783 and from the Stratton VA Medical Center.
Claassen J, Doyle K, Matory A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019;380(26):2497–505. 10.1056/NEJMoa181275710.1056/NEJMoa1812757. DOI: 10.1056/NEJMoa181275710.1056/NEJMoa1812757
Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140(9):2399–414. 10.1093/brain/awx17610.1093/brain/awx176. DOI: 10.1093/brain/awx17610.1093/brain/awx176
Giacino JT, Katz DI, Schiff ND, et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91(10):450–60. 10.1212/WNL.000000000000592610.1212/WNL.0000000000005926. DOI: 10.1212/WNL.000000000000592610.1212/WNL.0000000000005926
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol. 2021;17(3):135–56. 10.1038/s41582-020-00428-x10.1038/s41582-020-00428-x. DOI: 10.1038/s41582-020-00428-x10.1038/s41582-020-00428-x
Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 2015;72(12):1413–5. 10.1001/jamaneurol.2015.289910.1001/jamaneurol.2015.2899. DOI: 10.1001/jamaneurol.2015.289910.1001/jamaneurol.2015.2899
Claassen J, Kondziella D, Alkhachroum A et al. Cognitive Motor dissociation: gap analysis and future directions. Neurocrit Care 2023. 10.1007/s12028-023-01769-310.1007/s12028-023-01769-3.
Bodien Y, Allanson J, Cardone P, et al. 14th world congress on brain injury abstracts. Brain Inj. 2023;37(sup1):1–278. 10.1080/02699052.2023.224782210(1080/02699052),pp.2247822,2023. DOI: 10.1080/02699052.2023.224782210(1080/02699052),pp.2247822,2023
Monti MM, Vanhaudenhuyse A, Coleman MR, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579–89. 10.1056/NEJMoa090537010.1056/NEJMoa0905370. DOI: 10.1056/NEJMoa090537010.1056/NEJMoa0905370
Thengone DJ, Voss HU, Fridman EA, Schiff ND. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med 2016;8(368):368re5. https://doi.org/10.1126/scitranslmed.aaf6113 https://doi.org/10.1126/scitranslmed.aaf6113.
Fins J. Rights come to mind: brain injury, ethics, and the struggle for consciousness. Cambridge University Press;2015.
Saha S, Mamun KA, Ahmed K, et al. Progress in brain computer interface: challenges and opportunities. Front Syst Neurosci. 2021;15: 578875. 10.3389/fnsys.2021.57887510.3389/fnsys.2021.578875. DOI: 10.3389/fnsys.2021.57887510.3389/fnsys.2021.578875
Pandarinath C, Nuyujukian P, Blabe CH, et al. High performance communication by people with paralysis using an intracortical brain-computer interface. Elife. 2017;6: e18554. 10.7554/eLife.1855410.7554/eLife.18554. DOI: 10.7554/eLife.1855410.7554/eLife.18554
Brandman DM, Cash SS, Hochberg LR. Review: human intracortical recording and neural decoding for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1687–96. 10.1109/TNSRE.2017.267744310.1109/TNSRE.2017.2677443. DOI: 10.1109/TNSRE.2017.267744310.1109/TNSRE.2017.2677443
Churchland MM, Cunningham JP, Kaufman MT, et al. Neural population dynamics during reaching. Nature. 2012;487(7405):51–6. 10.1038/nature1112910.1038/nature11129. DOI: 10.1038/nature1112910.1038/nature11129
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
Fried-Oken M, Mooney A, Peters B, Oken B. A clinical screening protocol for the RSVP Keyboard brain-computer interface. Disabil Rehabil Assist Technol. 2015;10(1):11–8. 10.3109/17483107.2013.83668410(3109/17483107),pp.836684,2013. DOI: 10.3109/17483107.2013.83668410(3109/17483107),pp.836684,2013
Smart CM, Giacino JT, Cullen T, et al. A case of locked-in syndrome complicated by central deafness. Nat Clin Pract Neurol. 2008;4(8):448–53. 10.1038/ncpneuro082310.1038/ncpneuro0823. DOI: 10.1038/ncpneuro082310.1038/ncpneuro0823
Bensch M, Martens S, Halder S, et al. Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography. J Neural Eng. 2014;11(2): 026006. 10.1088/1741-2560/11/2/02600610.1088/1741-2560/11/2/026006. DOI: 10.1088/1741-2560/11/2/02600610.1088/1741-2560/11/2/026006
Fernández-Espejo D, Rossit S, Owen AM. A Thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients. JAMA Neurol. 2015;72(12):1442–50. 10.1001/jamaneurol.2015.261410.1001/jamaneurol.2015.2614. DOI: 10.1001/jamaneurol.2015.261410.1001/jamaneurol.2015.2614
Vansteensel MJ, Jarosiewicz B. Brain–computer interfaces for communication. Handb Clin Neurol. 2020;168:67–85. 10.1016/B978-0-444-63934-9.00007-X10.1016/B978-0-444-63934-9.00007-X. DOI: 10.1016/B978-0-444-63934-9.00007-X10.1016/B978-0-444-63934-9.00007-X
Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage. 2012;61(2):478–91. 10.1016/j.neuroimage.2011.12.04110.1016/j.neuroimage.2011.12.041. DOI: 10.1016/j.neuroimage.2011.12.04110.1016/j.neuroimage.2011.12.041
Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402. 10.1126/science.113019710.1126/science.1130197. DOI: 10.1126/science.113019710.1126/science.1130197
Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020;131(11):2736–65. 10.1016/j.clinph.2020.07.01510.1016/j.clinph.2020.07.015. DOI: 10.1016/j.clinph.2020.07.01510.1016/j.clinph.2020.07.015
Bardin JC, Fins JJ, Katz DI, et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain. 2011;134(3):769–82. 10.1093/brain/awr00510.1093/brain/awr005. DOI: 10.1093/brain/awr00510.1093/brain/awr005
Cruse D, Chennu S, Chatelle C, et al. Bedside detection of awareness in the vegetative state: a cohort study. Lancet. 2011;378(9809):2088–94. 10.1016/S0140-6736(11)61224-510.1016/S0140-6736(11)61224-5. DOI: 10.1016/S0140-6736(11)61224-510.1016/S0140-6736(11)61224-5
Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol. 2011;122(11):2157–68. 10.1016/j.clinph.2011.03.02210.1016/j.clinph.2011.03.022. DOI: 10.1016/j.clinph.2011.03.02210.1016/j.clinph.2011.03.022
Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, et al. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front Hum Neurosci. 2014;8:950. 10.3389/fnhum.2014.0095010.3389/fnhum.2014.00950. DOI: 10.3389/fnhum.2014.0095010.3389/fnhum.2014.00950
Laureys S, Faymonville ME, Peigneux P, et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage. 2002;17(2):732–41. DOI: 10.1006/nimg.2002.1236
Boly M, Faymonville ME, Schnakers C, et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 2008;7(11):1013–20. 10.1016/S1474-4422(08)70219-910.1016/S1474-4422(08)70219-9. DOI: 10.1016/S1474-4422(08)70219-910.1016/S1474-4422(08)70219-9
Schiff ND, Rodriguez-Moreno D, Kamal A, et al. fMRI reveals large-scale network activation in minimally conscious patients. Neurology. 2005;64(3):514–23. 10.1212/01.WNL.0000150883.10285.4410.1212/01.WNL.0000150883.10285.44. DOI: 10.1212/01.WNL.0000150883.10285.4410.1212/01.WNL.0000150883.10285.44
Menon DK, Owen AM, Williams EJ, et al. Cortical processing in persistent vegetative state. Wolfson Brain Imaging Centre Team Lancet. 1998;352(9123):200. 10.1016/s0140-6736(05)77805-310.1016/s0140-6736(05)77805-3. DOI: 10.1016/s0140-6736(05)77805-310.1016/s0140-6736(05)77805-3
Monti MM, Pickard JD, Owen AM. Visual cognition in disorders of consciousness: from V1 to top-down attention. Hum Brain Mapp. 2013;34(6):1245–53. 10.1002/hbm.2150710.1002/hbm.21507. DOI: 10.1002/hbm.2150710.1002/hbm.21507
Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci USA. 2009;106(5):1672–7. 10.1073/pnas.080966710610.1073/pnas.0809667106. DOI: 10.1073/pnas.080966710610.1073/pnas.0809667106
Sattin D, Bruzzone MG, Ferraro S, et al. Olfactory discrimination in disorders of consciousness: a new sniff protocol. Brain Behav. 2019;9(8): e01273. 10.1002/brb3.127310.1002/brb3.1273. DOI: 10.1002/brb3.127310.1002/brb3.1273
Arzi A, Rozenkrantz L, Gorodisky L, et al. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature. 2020;581(7809):428–33. 10.1038/s41586-020-2245-510.1038/s41586-020-2245-5. DOI: 10.1038/s41586-020-2245-510.1038/s41586-020-2245-5
Wijnen VJ, van Boxtel GJ, Eilander HJ, de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol. 2007;118(3):597–605. 10.1016/j.clinph.2006.11.02010.1016/j.clinph.2006.11.020. DOI: 10.1016/j.clinph.2006.11.02010.1016/j.clinph.2006.11.020
Faugeras F, Rohaut B, Weiss N, et al. Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness. Neuropsychologia. 2012;50(3):403–18. 10.1016/j.neuropsychologia.2011.12.01510.1016/j.neuropsychologia.2011.12.015. DOI: 10.1016/j.neuropsychologia.2011.12.01510.1016/j.neuropsychologia.2011.12.015
Kotchoubey B, Lang S, Mezger G, et al. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol. 2005;116(10):2441–53. 10.1016/j.clinph.2005.03.02810.1016/j.clinph.2005.03.028. DOI: 10.1016/j.clinph.2005.03.02810.1016/j.clinph.2005.03.028
Rohaut B, Faugeras F, Chausson N, et al. Probing ERP correlates of verbal semantic processing in patients with impaired consciousness. Neuropsychologia. 2015;66:279–92. 10.1016/j.neuropsychologia.2014.10.01410.1016/j.neuropsychologia.2014.10.014. DOI: 10.1016/j.neuropsychologia.2014.10.01410.1016/j.neuropsychologia.2014.10.014
Perrin F, Schnakers C, Schabus M, et al. Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol. 2006;63(4):562–9. 10.1001/archneur.63.4.56210.1001/archneur.63.4.562. DOI: 10.1001/archneur.63.4.56210.1001/archneur.63.4.562
Di HB, Yu SM, Weng XC, et al. Cerebral response to patient’s own name in the vegetative and minimally conscious states. Neurology. 2007;68(12):895–9. 10.1212/01.wnl.0000258544.79024.d010.1212/01.wnl.0000258544.79024.d0. DOI: 10.1212/01.wnl.0000258544.79024.d010.1212/01.wnl.0000258544.79024.d0
Lulé D, Noirhomme Q, Kleih SC, et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol. 2013;124(1):101–6. 10.1016/j.clinph.2012.04.03010.1016/j.clinph.2012.04.030. DOI: 10.1016/j.clinph.2012.04.03010.1016/j.clinph.2012.04.030
Schettini F, Risetti M, Arico P et al. P300 latency Jitter occurrence in patients with disorders of consciousness: toward a better design for Brain Computer Interface applications. Annu Int Conf IEEE Eng Med Biol Soc 2015;6178–81. https://doi.org/10.1109/EMBC.2015.7319803
Li Y, Pan J, He Y, et al. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system. BMC Neurol. 2015;15:259. 10.1186/s12883-015-0521-z10.1186/s12883-015-0521-z. DOI: 10.1186/s12883-015-0521-z10.1186/s12883-015-0521-z
Wang F, He Y, Pan J, et al. A novel audiovisual brain-computer interface and its application in awareness detection. Sci Rep. 2015;5:9962. 10.1038/srep0996210.1038/srep09962. DOI: 10.1038/srep0996210.1038/srep09962
Guger C, Spataro R, Pellas F, et al. Assessing command-following and communication with vibro-tactile P300 brain–computer interface tools in patients with unresponsive wakefulness syndrome. Front Neurosci. 2018;12:423. 10.3389/fnins.2018.0042310.3389/fnins.2018.00423. DOI: 10.3389/fnins.2018.0042310.3389/fnins.2018.00423
Annen J, Laureys S, Gosseries O. Brain–computer interfaces for consciousness assessment and communication in severely brain-injured patients. Handb Clin Neurol. 2020;168:137–52. 10.1016/B978-0-444-63934-9.00011-110.1016/B978-0-444-63934-9.00011-1. DOI: 10.1016/B978-0-444-63934-9.00011-110.1016/B978-0-444-63934-9.00011-1
Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164–73. 10.1109/tre.2000.84780710.1109/tre.2000.847807. DOI: 10.1109/tre.2000.84780710.1109/tre.2000.847807
Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013;5(198):198ra105. https://doi.org/10.1126/scitranslmed.3006294
Fischer C, Luaute J, Morlet D. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin Neurophysiol. 2010;121(7):1032–42. 10.1016/j.clinph.2010.02.00510.1016/j.clinph.2010.02.005. DOI: 10.1016/j.clinph.2010.02.00510.1016/j.clinph.2010.02.005
Mofakham S, Fry A, Adachi J, et al. Electrocorticography reveals thalamic control of cortical dynamics following traumatic brain injury. Commun Biol. 2021;4(1):1210. 10.1038/s42003-021-02738-210.1038/s42003-021-02738-2. DOI: 10.1038/s42003-021-02738-210.1038/s42003-021-02738-2
Mofakham S, Liu Y, Hensley A, et al. Injury to thalamocortical projections following traumatic brain injury results in attractor dynamics for cortical networks. Prog Neurobiol. 2022;210: 102215. 10.1016/j.pneurobio.2022.10221510.1016/j.pneurobio.2022.102215. DOI: 10.1016/j.pneurobio.2022.10221510.1016/j.pneurobio.2022.102215
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65–71. 10.1038/s41586-018-0649-210.1038/s41586-018-0649-2. DOI: 10.1038/s41586-018-0649-210.1038/s41586-018-0649-2
Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022;28(2):260–71. 10.1038/s41591-021-01663-510.1038/s41591-021-01663-5. DOI: 10.1038/s41591-021-01663-510.1038/s41591-021-01663-5
Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126–33. 10.1038/s41586-023-06094-510.1038/s41586-023-06094-5. DOI: 10.1038/s41586-023-06094-510.1038/s41586-023-06094-5
Scangos KW, Khambhati AN, Daly PM, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med. 2021;27(10):1696–700. 10.1038/s41591-021-01480-w10.1038/s41591-021-01480-w. DOI: 10.1038/s41591-021-01480-w10.1038/s41591-021-01480-w
Shirvalkar P, Veuthey TL, Dawes HE, Chang EF. Closed-loop deep brain stimulation for refractory chronic pain. Front Comput Neurosci. 2018;12:18. 10.3389/fncom.2018.0001810.3389/fncom.2018.00018. DOI: 10.3389/fncom.2018.0001810.3389/fncom.2018.00018
Shirvalkar P, Prosky J, Chin G, et al. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat Neurosci. 2023;26(6):1090–9. 10.1038/s41593-023-01338-z10.1038/s41593-023-01338-z. DOI: 10.1038/s41593-023-01338-z10.1038/s41593-023-01338-z
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep brain stimulation in movement disorders: from experimental surgery to evidence-based therapy. Mov Disord. 2019;34(12):1795–810. 10.1002/mds.2786010.1002/mds.27860. DOI: 10.1002/mds.2786010.1002/mds.27860
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: achieving real-time brain state control for novel applications. Curr Res Neurobiol. 2023;4: 100071. 10.1016/j.crneur.2022.10007110.1016/j.crneur.2022.100071. DOI: 10.1016/j.crneur.2022.10007110.1016/j.crneur.2022.100071
Rangayyan RM. Biomedical signal analysis. Wiley;2015.
Kamble A, Ghare P, Kumar V. Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG. Biomed Signal Process Control. 2022;74: 103526. DOI: 10.1016/j.bspc.2022.103526
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. 10.1098/rsta.2015.020210.1098/rsta.2015.0202. DOI: 10.1098/rsta.2015.020210.1098/rsta.2015.0202
Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–59. 10.1162/neco.1995.7.6.112910.1162/neco.1995.7.6.1129. DOI: 10.1162/neco.1995.7.6.112910.1162/neco.1995.7.6.1129
Lee TW, Girolami M, Sejnowski TJ. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput. 1999;11(2):417–41. 10.1162/08997669930001671910.1162/089976699300016719. DOI: 10.1162/08997669930001671910.1162/089976699300016719
Hyvärinen A, Karhunen J, Oja E. Independent component analysis. Wiley;2001.
Calhoun VD, Adali T, Pearlson GD, Kiehl KA. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage. 2006;30(2):544–53. 10.1016/j.neuroimage.2005.08.06010.1016/j.neuroimage.2005.08.060. DOI: 10.1016/j.neuroimage.2005.08.06010.1016/j.neuroimage.2005.08.060
Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD. Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int J Psychophysiol. 2008;67(3):212–21. 10.1016/j.ijpsycho.2007.05.01610.1016/j.ijpsycho.2007.05.016. DOI: 10.1016/j.ijpsycho.2007.05.01610.1016/j.ijpsycho.2007.05.016
Mosayebi R, Hossein-Zadeh G-A. Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion. Biomed Signal Process Control. 2020;62: 102071. 10.1016/j.bspc.2020.10207110.1016/j.bspc.2020.102071. DOI: 10.1016/j.bspc.2020.10207110.1016/j.bspc.2020.102071
Van Eyndhoven S, Dupont P, Tousseyn S, et al. Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. Neuroimage. 2021;228: 117652. 10.1016/j.neuroimage.2020.11765210.1016/j.neuroimage.2020.117652. DOI: 10.1016/j.neuroimage.2020.11765210.1016/j.neuroimage.2020.117652
Aggarwal S, Chugh N. Signal processing techniques for motor imagery brain computer interface: a review. Array. 2019;1–2: 100003. 10.1016/j.array.2019.10000310.1016/j.array.2019.100003. DOI: 10.1016/j.array.2019.10000310.1016/j.array.2019.100003
Molteni E, Arrigoni F, Bardoni A et al. Bedside assessment of residual functional activation in minimally conscious state using NIRS and general linear models. Annu Int Conf IEEE Eng Med Biol Soc 2013:3551–4. https://doi.org/10.1109/EMBC.2013.6610309
Pincherle A, Rossi F, Jöhr J, et al. Early discrimination of cognitive motor dissociation from disorders of consciousness: pitfalls and clues. J Neurol. 2021;268(1):178–88. 10.1007/s00415-020-10125-w10.1007/s00415-020-10125-w. DOI: 10.1007/s00415-020-10125-w10.1007/s00415-020-10125-w
Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85(12):2020–9. 10.1016/j.apmr.2004.02.03310.1016/j.apmr.2004.02.033. DOI: 10.1016/j.apmr.2004.02.03310.1016/j.apmr.2004.02.033
Pincherle A, Jöhr J, Chatelle C, et al. Motor behavior unmasks residual cognition in disorders of consciousness. Ann Neurol. 2019;85(3):443–7. 10.1002/ana.2541710.1002/ana.25417. DOI: 10.1002/ana.2541710.1002/ana.25417
Onofrj M, Melchionda D, Thomas A, Fulgente T. Reappearance of event-related P3 potential in locked-in syndrome. Cogn Brain Res. 1996;4(2):95–7. 10.1016/0926-6410(96)00021-310.1016/0926-6410(96)00021-3. DOI: 10.1016/0926-6410(96)00021-310.1016/0926-6410(96)00021-3
Forgacs PB, Fridman EA, Goldfine AM, Schiff ND. Isolation syndrome after cardiac arrest and therapeutic hypothermia. Front Neurosci. 2016;10:259. 10.3389/fnins.2016.0025910.3389/fnins.2016.00259. DOI: 10.3389/fnins.2016.0025910.3389/fnins.2016.00259
Chennu S, Finoia P, Kamau E, et al. Spectral signatures of reorganised brain networks in disorders of consciousness. PLoS Comput Biol. 2014;10(10): e1003887. 10.1371/journal.pcbi.100388710.1371/journal.pcbi.1003887. DOI: 10.1371/journal.pcbi.100388710.1371/journal.pcbi.1003887
Sitt JD, King JR, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258–70. 10.1093/brain/awu14110.1093/brain/awu141. DOI: 10.1093/brain/awu14110.1093/brain/awu141
Engemann DA, Raimondo F, King JR, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141(11):3179–92. 10.1093/brain/awy25110.1093/brain/awy251. DOI: 10.1093/brain/awy25110.1093/brain/awy251
Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol. 2014;76(6):869–79. 10.1002/ana.2428310.1002/ana.24283. DOI: 10.1002/ana.2428310.1002/ana.24283
Curley WH, Forgacs PB, Voss HU, Conte MM, Schiff ND. Characterization of EEG signals revealing covert cognition in the injured brain. Brain. 2018;141(5):1404–21. 10.1093/brain/awy07010.1093/brain/awy070. DOI: 10.1093/brain/awy07010.1093/brain/awy070
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. 2014;10(2):99–114. 10.1038/nrneurol.2013.27910.1038/nrneurol.2013.279. DOI: 10.1038/nrneurol.2013.27910.1038/nrneurol.2013.279
Cruse D, Chennu S, Fernández-Espejo D, Payne WL, Young GB, Owen AM. Detecting awareness in the vegetative state: electroencephalographic evidence for attempted movements to command. PLoS ONE. 2012;7(11): e49933. 10.1371/journal.pone.004993310.1371/journal.pone.0049933. DOI: 10.1371/journal.pone.004993310.1371/journal.pone.0049933
Bekinschtein TA, Coleman MR, Niklison J, Pickard JD, Manes FF. Can electromyography objectively detect voluntary movement in disorders of consciousness. J Neurol Neurosurg Psychiatry. 2008;79(7):826–8. 10.1136/jnnp.2007.13273810.1136/jnnp.2007.132738. DOI: 10.1136/jnnp.2007.13273810.1136/jnnp.2007.132738
Bekinschtein TA, Shalom DE, Forcato C, et al. Classical conditioning in the vegetative and minimally conscious state. Nat Neurosci. 2009;12(10):1343–9. 10.1038/nn.239110.1038/nn.2391. DOI: 10.1038/nn.239110.1038/nn.2391
Chatelle C, Spencer CA, Cash SS, Hochberg LR, Edlow BL. Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin Neurophysiol. 2018;129(8):1519–25. 10.1016/j.clinph.2018.04.74710.1016/j.clinph.2018.04.747. DOI: 10.1016/j.clinph.2018.04.74710.1016/j.clinph.2018.04.747
Calabrò RS, Pignolo L, Müller-Eising C, Naro A. Pain perception in disorder of consciousness: a scoping review on current knowledge, clinical applications, and future perspective. Brain Sci. 2021;11(5):665. 10.3390/brainsci1105066510.3390/brainsci11050665. DOI: 10.3390/brainsci1105066510.3390/brainsci11050665
Noel JP, Chatelle C, Perdikis S, et al. Peri-personal space encoding in patients with disorders of consciousness and cognitive-motor dissociation. Neuroimage Clin. 2019;24: 101940. 10.1016/j.nicl.2019.10194010.1016/j.nicl.2019.101940. DOI: 10.1016/j.nicl.2019.10194010.1016/j.nicl.2019.101940
Diserens K, Meyer IA, Jöhr J, et al. A focus on subtle signs and motor behavior to unveil awareness in unresponsive brain-impaired patients. Neurology. 2023;100(24):1144–50. 10.1212/wnl.000000000020706710.1212/wnl.0000000000207067. DOI: 10.1212/wnl.000000000020706710.1212/wnl.0000000000207067
Franzova E, Shen Q, Doyle K et al. Injury patterns associated with cognitive motor dissociation. Brain 2023 Aug 14;awad197 [Online ahead of print] https://doi.org/10.1093/brain/awad197
Cosgrove ME, Saadon JR, Mikell CB, et al. Thalamo-prefrontal connectivity correlates with early command-following after severe traumatic brain injury. Front Neurol. 2022;13: 826266. 10.3389/fneur.2022.82626610.3389/fneur.2022.826266. DOI: 10.3389/fneur.2022.82626610.3389/fneur.2022.826266
Zelmann R, Paulk AC, Tian F et al. Differential cortical network engagement during states of un/consciousness in humans. Neuron 2023 Aug 29;S0896–6273(23)00618–9 [Online ahead of print] https://doi.org/10.1016/j.neuron.2023.08.007
Galiotta V, Quattrociocchi I, D’Ippolito M, et al. EEG-based Brain-Computer Interfaces for people with Disorders of Consciousness: Features and applications. A systematic review. Front Hum Neurosci. 2022;16:1040816. 10.3389/fnhum.2022.104081610.3389/fnhum.2022.1040816. DOI: 10.3389/fnhum.2022.104081610.3389/fnhum.2022.1040816
Pan J, Xie Q, He Y, et al. Detecting awareness in patients with disorders of consciousness using a hybrid brain-computer interface. J Neural Eng. 2014;11(5): 056007. 10.1088/1741-2560/11/5/05600710.1088/1741-2560/11/5/056007. DOI: 10.1088/1741-2560/11/5/05600710.1088/1741-2560/11/5/056007
Voss HU, Uluğ AM, Dyke JP, et al. Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Investig. 2006;116(7):2005–11. 10.1172/JCI2702110.1172/JCI27021. DOI: 10.1172/JCI2702110.1172/JCI27021
Molteni E, Rocca MA, Strazzer S, et al. A diffusion tensor magnetic resonance imaging study of paediatric patients with severe non-traumatic brain injury. Dev Med Child Neurol. 2017;59(2):199–206. 10.1111/dmcn.1333210.1111/dmcn.13332. DOI: 10.1111/dmcn.1333210.1111/dmcn.13332
Avantaggiato P, Molteni E, Formica F, et al. Polysomnographic sleep patterns in children and adolescents in unresponsive wakefulness syndrome. J Head Trauma Rehabil. 2015;30(5):334–46. 10.1097/HTR.000000000000012210.1097/HTR.0000000000000122. DOI: 10.1097/HTR.000000000000012210.1097/HTR.0000000000000122
Irzan H, Pozzi M, Chikhladze N, et al. Emerging treatments for disorders of consciousness in paediatric age. Brain Sci. 2022;12(2):198. 10.3390/brainsci1202019810.3390/brainsci12020198. DOI: 10.3390/brainsci1202019810.3390/brainsci12020198
Shewmon DA, Holmes GL, Byrne PA. Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev Med Child Neurol. 1999;41(6):364–74. 10.1017/s001216229900082110.1017/s0012162299000821. DOI: 10.1017/s001216229900082110.1017/s0012162299000821
Nelson CA, Luciana M. Handbook of developmental cognitive neuroscience. MIT Press;2008.
Mikołajewska E, Mikołajewski D. The prospects of brain–computer interface applications in children. Open Med. 2014;9(1):74–9. 10.2478/s11536-013-0249-310.2478/s11536-013-0249-3. DOI: 10.2478/s11536-013-0249-310.2478/s11536-013-0249-3
Orlandi S, House SC, Karlsson P, Saab R, Chau T. Brain-computer interfaces for children with complex communication needs and limited mobility: a systematic review. Front Hum Neurosci. 2021;15: 643294. 10.3389/fnhum.2021.64329410.3389/fnhum.2021.643294. DOI: 10.3389/fnhum.2021.64329410.3389/fnhum.2021.643294
Ehlers J, Valbuena D, Stiller A, Gräser A. Age-specific mechanisms in an SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators. Comput Intell Neurosci 2012:967305. 10.1155/2012/967305
Volosyak I, Gembler F, Stawicki P. Age-related differences in SSVEP-based BCI performance. Neurocomputing. 2017;250:57–64. 10.1016/j.neucom.2016.08.12110.1016/j.neucom.2016.08.121. DOI: 10.1016/j.neucom.2016.08.12110.1016/j.neucom.2016.08.121
Kinney-Lang E, Kelly D, Floreani ED, et al. Advancing brain-computer interface applications for severely disabled children through a multidisciplinary national network: summary of the inaugural pediatric BCI Canada Meeting. Front Hum Neurosci. 2020;14: 593883. 10.3389/fnhum.2020.59388310.3389/fnhum.2020.593883. DOI: 10.3389/fnhum.2020.59388310.3389/fnhum.2020.593883
Zhang J, Jadavji Z, Zewdie E, Kirton A. Evaluating if children can use simple brain computer interfaces. Front Hum Neurosci. 2019;13:24. 10.3389/fnhum.2019.0002410.3389/fnhum.2019.00024. DOI: 10.3389/fnhum.2019.0002410.3389/fnhum.2019.00024
Kim N, O’Sullivan J, Olafson E, et al. Cognitive-motor dissociation following pediatric brain injury: what about the children. Neurol Clin Pract. 2022;12(3):248–57. 10.1212/CPJ.000000000000116910.1212/CPJ.0000000000001169. DOI: 10.1212/CPJ.000000000000116910.1212/CPJ.0000000000001169
Kim N, Watson W, Caliendo E, et al. Objective neurophysiologic markers of cognition after pediatric brain injury. Neurol Clin Pract. 2022;12(5):352–64. 10.1212/CPJ.000000000020006610.1212/CPJ.0000000000200066. DOI: 10.1212/CPJ.000000000020006610.1212/CPJ.0000000000200066
Sanchez JC, Gunduz A, Carney PR, Principe JC. Extraction and localization of mesoscopic motor control signals for human ECoG neuroprosthetics. J Neurosci Methods. 2008;167(1):63–81. 10.1016/j.jneumeth.2007.04.01910.1016/j.jneumeth.2007.04.019. DOI: 10.1016/j.jneumeth.2007.04.01910.1016/j.jneumeth.2007.04.019
Breshears JD, Gaona CM, Roland JL, et al. Decoding motor signals from the pediatric cortex: implications for brain-computer interfaces in children. Pediatrics. 2011;128(1):e160–8. 10.1542/peds.2010-151910.1542/peds.2010-1519. DOI: 10.1542/peds.2010-151910.1542/peds.2010-1519
Pistohl T, Schmidt TS, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Grasp detection from human ECoG during natural reach-to-grasp movements. PLoS ONE. 2013;8(1): e54658. 10.1371/journal.pone.005465810.1371/journal.pone.0054658. DOI: 10.1371/journal.pone.005465810.1371/journal.pone.0054658
Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, Ball T. Decoding natural grasp types from human ECoG. Neuroimage. 2012;59(1):248–60. 10.1016/j.neuroimage.2011.06.08410.1016/j.neuroimage.2011.06.084. DOI: 10.1016/j.neuroimage.2011.06.08410.1016/j.neuroimage.2011.06.084
Willett FR, Kunz EM, Fan C, et al. A high-performance speech neuroprosthesis. Nature. 2023;620(7976):1031–6. 10.1038/s41586-023-06377-x10.1038/s41586-023-06377-x. DOI: 10.1038/s41586-023-06377-x10.1038/s41586-023-06377-x
Rodriguez Moreno D, Schiff ND, Giacino J, Kalmar K, Hirsch J. A network approach to assessing cognition in disorders of consciousness. Neurology. 2010;75(21):1871–8. 10.1212/WNL.0b013e3181feb25910.1212/WNL.0b013e3181feb259. DOI: 10.1212/WNL.0b013e3181feb25910.1212/WNL.0b013e3181feb259
Parliamentary Office of Science and Technology, 2020. Brain-Computer Interface. POSTNote No. 614. UK Parliament. Available from: https://post.parliament.uk/research-briefings/post-pn-0614.
Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N Engl J Med. 1994;330(21):1499–508. 10.1056/NEJM19940526330210710.1056/NEJM199405263302107. DOI: 10.1056/NEJM19940526330210710.1056/NEJM199405263302107
Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58(3):349–53. 10.1212/wnl.58.3.34910.1212/wnl.58.3.349. DOI: 10.1212/wnl.58.3.34910.1212/wnl.58.3.349
Thibaut A, Bodien YG, Laureys S, Giacino JT. Minimally conscious state “plus”: diagnostic criteria and relation to functional recovery. J Neurol. 2020;267(5):1245–54. 10.1007/s00415-019-09628-y10.1007/s00415-019-09628-y. DOI: 10.1007/s00415-019-09628-y10.1007/s00415-019-09628-y
Posner JB, Saper CB, Schiff ND, Jan Claassen MD. Plum and Posner’s diagnosis and treatment of stupor and coma. Oxford University Press, 2019.
Schnetzer L, McCoy M, Bergmann J, Kunz A, Leis S, Trinka E. Locked-in syndrome revisited. Ther Adv Neurol Disord. 2023;16:17562864231160872. 10.1177/1756286423116087310.1177/17562864231160873. DOI: 10.1177/1756286423116087310.1177/17562864231160873
Formica F, Pozzi M, Avantaggiato P, et al. Disordered consciousness or disordered wakefulness? The importance of prolonged polysomnography for the diagnosis, drug therapy, and rehabilitation of an unresponsive patient with brain injury. J Clin Sleep Med. 2017;13(12):1477–81. 10.5664/jcsm.685410.5664/jcsm.6854. DOI: 10.5664/jcsm.685410.5664/jcsm.6854
Edlow BL, Olchanyi M, Freeman HJ et al. Sustaining wakefulness: Brainstem connectivity in human consciousness. bioRxiv 2023 Jul 15 [Preprint] https://doi.org/10.1101/2023.07.13.548265
Spataro R, Heilinger A, Allison B, et al. Preserved somatosensory discrimination predicts consciousness recovery in unresponsive wakefulness syndrome. Clin Neurophysiol. 2018;129(6):1130–6. 10.1016/j.clinph.2018.02.13110.1016/j.clinph.2018.02.131. DOI: 10.1016/j.clinph.2018.02.13110.1016/j.clinph.2018.02.131
Pokorny C, Breitwieser C, Müller-Putz GR. The role of transient target stimuli in a steady-state somatosensory evoked potential-based brain-computer interface setup. Front Neurosci. 2016;10:152. 10.3389/fnins.2016.0015210.3389/fnins.2016.00152. DOI: 10.3389/fnins.2016.0015210.3389/fnins.2016.00152