Shallow reservoirs; oscillating jets; analytical model; Rossiter feedback loop formula
Abstract :
[en] Shallow reservoirs are ubiquitous in hydraulic engineering. Predicting the properties of the flow field in such reservoirs is instrumental to inform their design, operation, and maintenance. In previous research, oscillating jets were experimentally observed in rectangular shallow reservoirs, and we assess here the performance of a simple analytical model to predict the frequency of the dominating jet oscillation mode(s). The model couples the evaluation of the reservoir natural frequencies, with the Rossiter feedback loop formula. The analytical predictions are compared against experimental observations by reanalyzing an existing dataset. In many cases, the model predictions match the observations. Remaining discrepancies may result from experimental uncertainties, which could be reduced in future tailored laboratory tests, or from the dimensionless vortex celerity value used by the feedback loop model, which was not assessed experimentally.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Mignot, Emmanuel
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Application of the Rossiter model for predicting the frequency of vortex shedding and surface oscillations in rectangular shallow reservoirs
Publication date :
2024
Journal title :
Journal of Hydraulic Engineering
ISSN :
0733-9429
Publisher :
American Society of Civil Engineers, United States - New York
Volume :
150
Issue :
6
Pages :
06024007
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
6. Clean water and sanitation 7. Affordable and clean energy
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adamsson, Å., V. Stovin, and, L. Bergdahl. 2003. " Bed shear stress boundary condition for storage tank sedimentation." J. Environ. Eng. 129 (Jan): 651-658. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:7(651).
Ahuja, K. K., and, J. Mendoza. 1995. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes. NASA Contractor Rep. No. 4653. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center.
Block, P. J. 1976. Noise response of cavities of varying dimensions at subsonic speeds. NASA Technical Notes, D-8361. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center.
Camnasio, E., S. Erpicum, E. Orsi, M. Pirotton, A. J. Schleiss, and, B. Dewals. 2013. " Coupling between flow and sediment deposition in rectangular shallow reservoirs." J. Hydraul. Res. 51 (5): 535-547. https://doi.org/10.1080/00221686.2013.805311.
Camnasio, E., E. Orsi, and, A. J. Schleiss. 2011. " Experimental study of velocity fields in rectangular shallow reservoirs." J. Hydraul. Res. 49 (3): 352-358. https://doi.org/10.1080/00221686.2011.574387.
Colonius, T., A. Basu, and, C. Rowley. 1999. " Numerical investigation of the flow past a cavity." In Proc., 5th AIAA/CEAS Aeroacoustics Conf. and Exhibit. Reston, VA: American Institute of Aeronautics and Astronautics.
Dewals, B. J., S. A. Kantoush, S. Erpicum, M. Pirotton, and, A. J. Schleiss. 2008. " Experimental and numerical analysis of flow instabilities in rectangular shallow basins." Environ. Fluid Mech. 8 (1): 31-54. https://doi.org/10.1007/s10652-008-9053-z.
Dufresne, M., B. J. Dewals, S. Erpicum, P. Archambeau, and, M. Pirotton. 2010 a. " Classification of flow patterns in rectangular shallow reservoirs." J. Hydraul. Res. 48 (2): 197-204. https://doi.org/10.1080/00221681003704236.
Dufresne, M., B. J. Dewals, S. Erpicum, P. Archambeau, and, M. Pirotton. 2010 b. " Experimental investigation of flow pattern and sediment deposition in rectangular shallow reservoirs." Int. J. Sediment Res. 25 (3): 258-270. https://doi.org/10.1016/S1001-6279(10)60043-1.
Dufresne, M., J. Vazquez, A. Terfous, A. Ghenaim, and, J. B. Poulet. 2009. " Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank." Comput. Fluids 38 (5): 1042-1049. https://doi.org/10.1016/j.compfluid.2008.01.011.
East, L. F. 1966. " Aerodynamically induced resonance in rectangular cavities." J. Sound Vib. 3 (3): 277-287. https://doi.org/10.1016/0022-460X(66)90096-4.
Engelen, L., C. Perrot-Minot, E. Mignot, N. Riviere, and, T. De Mulder. 2020. " Experimental study of bidirectional seiching in an open-channel, lateral cavity in the time and frequency domain." Phys. Rev. Fluids 5 (10): 104801. https://doi.org/10.1103/PhysRevFluids.5.104801.
Gao, J. H., and, X. D. Li. 2010. " A multi-mode screech frequency prediction formula for circular supersonic jets." J. Acoust. Soc. Am. 127 (3): 1251-1257. https://doi.org/10.1121/1.3291001.
Guzman, C. B., S. Cohen, M. Xavier, T. Swingle, W. Qiu, and, H. Nepf. 2018. " Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands." Ecol. Eng. 117 (Sep): 182-193. https://doi.org/10.1016/j.ecoleng.2018.02.020.
Heller, H. H., D. G. Holmes, and, E. E. Covert. 1971. " Flow-induced pressure oscillations in shallow cavities." J. Sound Vib. 18 (4): 545-553. https://doi.org/10.1016/0022-460X(71)90105-2.
Ho, C. M., and, N. S. Nosseir. 1981. " Dynamics of an impinging jet. Part 1. The feedback phenomenon." J. Fluid Mech. 105 (Apr): 119-142. https://doi.org/10.1017/S0022112081003133.
Izdori, F., A. J. C. Semiao, and, P. Perona. 2019. " The role of environmental variables in waste stabilization ponds' morphodynamics." Front. Environ. Sci. 7 (Nov): 159. https://doi.org/10.3389/fenvs.2019.00159.
Kegerise, M. A. 1999. " An experimental investigation of flow-induced cavity oscillations." Ph.D. thesis, Dept. of Mechanical and Aerospace Engineering, Syracuse Univ.
Lakzian, E., H. Saghi, and, O. Kooshki. 2020. " Numerical simulation of sediment deposition and trapping efficiency estimation in settling basins, considering secondary flows." Int. J. Sediment Res. 35 (4): 347-354. https://doi.org/10.1016/j.ijsrc.2020.02.001.
Lamb, H. 1945. Hydrodynamics. New York: Cambridge University Press.
Larchevêque, L., P. Sagaut, I. Mary, O. Labbé, and, P. Comte. 2003. " Large-eddy simulation of a compressible flow past a deep cavity." Phys. Fluids 15 (1): 193-210. https://doi.org/10.1063/1.1522379.
Li, H., and, J. Sansalone. 2021. " CFD with evolutionary optimization for stormwater basin retrofits." J. Environ. Eng. 147 (7): 04021017. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001881.
Liu, X., H. Xue, Z. Hua, Q. Yao, and, J. Hu. 2013. " Inverse calculation model for optimal design of rectangular sedimentation tanks." J. Environ. Eng. 139 (Apr): 455-459. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000655.
Mercier, B., T. Castelain, and, C. Bailly. 2017. " Experimental characterisation of the screech feedback loop in underexpanded round jets." J. Fluid Mech. 824 (Jun): 202-229. https://doi.org/10.1017/jfm.2017.336.
Miozzi, M., and, G. P. Romano. 2020. " Propagation of perturbations and meandering in a free surface shallow water jet." Exp. Fluids 61 (Apr): 1-18. https://doi.org/10.1007/s00348-020-03025-2.
Panda, J. 1999. " An experimental investigation of screech noise generation." J. Fluid Mech. 378 (Sep): 71-96. https://doi.org/10.1017/S0022112098003383.
Peltier, Y., S. Erpicum, P. Archambeau, M. Pirotton, and, B. Dewals. 2014 a. " Experimental investigation of meandering jets in shallow reservoirs." Environ. Fluid Mech. 14 (3): 699-710. https://doi.org/10.1007/s10652-014-9339-2.
Peltier, Y., S. Erpicum, P. Archambeau, M. Pirotton, and, B. Dewals. 2014 b. " Meandering jets in shallow rectangular reservoirs: POD analysis and identification of coherent structures." Exp. Fluids 55 (Apr): 1-16. https://doi.org/10.1007/s00348-014-1740-6.
Peltier, Y., S. Erpicum, P. Archambeau, M. Pirotton, and, B. Dewals. 2015. " Can meandering flows in shallow rectangular reservoirs be modeled with the 2D shallow water equations? " J. Hydraul. Eng. 141 (Mar): 04015008. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001006.
Perrot-Minot, C., E. Mignot, R. Perkins, D. Lopez, and, N. Riviere. 2020. " Vortex shedding frequency in open-channel lateral cavity." J. Fluid Mech. 892 (Nov): A25. https://doi.org/10.1017/jfm.2020.186.
Persson, J., and, H. B. Wittgren. 2003. " How hydrological and hydraulic conditions affect performance of ponds." Ecol. Eng. 21 (4-5): 259-269. https://doi.org/10.1016/j.ecoleng.2003.12.004.
Powell, A., Y. Umeda, and, R. Ishii. 1992. " Observations of the oscillation modes of choked circular jets." J. Acoust. Soc. Am. 92 (5): 2823-2836. https://doi.org/10.1121/1.404398.
Rabinovich, A. B. 2009. " Seiches and harbor oscillations." In Handbook of coastal and ocean engineering, 193-236. Singapore: World Scientific.
Rossiter, J. E. 1964. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda, Tech. Rep. 3438. London: Stationery Office.
Rowley, C. W., D. R. Williams, T. Colonius, R. M. Murray, and, D. G. Macmynowski. 2006. " Linear models for control of cavity flow oscillations." J. Fluid Mech. 547 (Jan): 317-330. https://doi.org/10.1017/S0022112005007299.
Tam, C. K., J. M. Seiner, and, J. C. Yu. 1986. " Proposed relationship between broadband shock associated noise and screech tones." J. Sound Vib. 110 (2): 309-321. https://doi.org/10.1016/S0022-460X(86)80212-7.
Tarpagkou, R., and, A. Pantokratoras. 2013. " CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations." Appl. Math. Modell. 37 (5): 3478-3494. https://doi.org/10.1016/j.apm.2012.08.011.
Yan, H., N. Vosswinkel, S. Ebbert, G. Lipeme Kouyi, R. Mohn, M. Uhl, and, J.-L. Bertrand-Krajewski. 2020. " Numerical investigation of particles' transport, deposition and resuspension under unsteady conditions in constructed stormwater ponds." Environ. Sci. Eur. 32 (Dec): 1-17. https://doi.org/10.1186/s12302-020-00349-y.
Zhang, J.-M., H. P. Lee, B. C. Khoo, K. Q. Peng, L. Zhong, C.-W. Kang, and, T. Ba. 2014. " Shape effect on mixing and age distributions in service reservoirs." J. Am. Water Works Assoc. 106 (Apr): E481-E491. https://doi.org/10.5942/jawwa.2014.106.0094.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.