Paper published in a journal (Scientific congresses and symposiums)
The Reverse Water-Gas Shift Reaction as an Intermediate Step for Synthetic Jet Fuel Production: A Reactor Sizing Study at Two Different Scales
Rouxhet, Antoine; Léonard, Grégoire
2024In Computer Aided Chemical Engineering, 53 (2024), p. 685-690
Peer reviewed
 

Files


Full Text
article ESCAPE34.pdf
Author postprint (354.57 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reverse water-gas shift (rWGS); modelling; kinetics; process design
Abstract :
[en] This paper presents a reactor model for the reverse water-gas shift reaction (rWGS) implemented in the framework of captured CO2 conversion. Kinetics are included in the model and validated with experimental data from the literature. The model is used to size a reactor at two scales: a small pilot (inlet H2 of 1.5 Nm³/h) and a mature plant (inlet H2 of 1,500 Nm³/h). The designs at both scales differ by the heating configuration; it is assumed that the small-scale unit is isothermal while the industrial-scale unit is adiabatic. For the small-scale unit, it is shown that the equilibrium conversion (65.6 %) can easily be reached within 30 cm at 1 bar. However, this reactor is not optimal for a 20-bar operation as the maximum conversion (65.2 %) is reached in the first centimetres before decreasing to 62.1 %, as methanation occurs, leading to an outlet CH4 selectivity of 17.3 %. In the large-scale adiabatic unit, both operating pressures lead to a sudden temperature drop due to the endothermic reaction followed by a temperature increase, but this latter is more important at high pressure due to methanation accentuation. This difference in the temperature profile results in a CO2 conversion of 64.8 % at 20 bar against 51.1 % at 1 bar. In summary, the equilibrium conversion in an isothermal unit is slightly higher at 1 bar, even in a reactor adequately sized for each pressure. In an adiabatic unit, the equilibrium conversion is reached within the same length for both pressures and is significantly higher at 20 bar, at the extent of an accentuated methanation.
Disciplines :
Chemical engineering
Author, co-author :
Rouxhet, Antoine  ;  Université de Liège - ULiège > Department of Chemical Engineering > Intensification des procédés de l'industrie chimique basée sur l'analyse systémique
Léonard, Grégoire  ;  Université de Liège - ULiège > Department of Chemical Engineering > Intensification des procédés de l'industrie chimique basée sur l'analyse systémique
Language :
English
Title :
The Reverse Water-Gas Shift Reaction as an Intermediate Step for Synthetic Jet Fuel Production: A Reactor Sizing Study at Two Different Scales
Alternative titles :
[fr] La réaction inverse du gaz à l'eau en tant qu'étape intermédiaire de la production de carburant synthétique pour avion : une étude de dimensionnement de réacteur à deux échelles différentes
Publication date :
27 June 2024
Event name :
34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering (ESCAPE34/PSE24)
Event organizer :
The Italian Association of Chemical Engineering (AIDIC)
Event place :
Florence, Italy
Event date :
2-6 juin 2024
Audience :
International
Journal title :
Computer Aided Chemical Engineering
ISSN :
1570-7946
Publisher :
Elsevier, Amsterdam, Netherlands
Special issue title :
34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering (ESCAPE34/PSE24)
Volume :
53
Issue :
2024
Pages :
685-690
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 08 June 2024

Statistics


Number of views
90 (9 by ULiège)
Number of downloads
213 (5 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi