[en] Zinc is an essential micronutrient for all living organisms. When challenged by zinc-limiting conditions, Arabidopsis thaliana plants use a strategy centered on two transcription factors, bZIP19 and bZIP23, to enhance the expression of several zinc transporters to improve their zinc uptake capacity. In the zinc and cadmium hyperaccumulator plant Arabidopsis halleri, highly efficient root-to-shoot zinc translocation results in constitutive local zinc deficiency in roots and in constitutive high expression of zinc deficiency-responsive ZIP genes, supposedly boosting zinc uptake and accumulation. Here, to disrupt this process and to analyze the functions of AhbZIP19, AhbZIP23 and their target genes in hyperaccumulation, the genes encoding both transcriptional factors were knocked down using artificial microRNAs (amiRNA). Although AhbZIP19, AhbZIP23, and their ZIP target genes were downregulated, amiRNA lines surprisingly accumulated more zinc and cadmium compared to control lines in both roots and shoot driving to shoot toxicity symptoms. These observations suggested the existence of a substitute metal uptake machinery in A. halleri to maintain hyperaccumulation. We propose that the iron uptake transporter AhIRT1 participates in this alternative pathway in A. halleri.
Spielmann, Julien ; Université de Liège - ULiège > Département des sciences de la vie > Génomique fonctionnelle et imagerie moléculaire végétale
Schloesser, Marie ; Université de Liège - ULiège > Département des sciences de la vie
Hanikenne, Marc ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Université de Liège - ULiège > Département des sciences de la vie > Biologie végétale translationnelle
Language :
English
Title :
Reduced expression of bZIP19 and bZIP23 increases zinc and cadmium accumulation in Arabidopsis halleri.
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Belgian Federal Science Policy Office
Funding text :
We thank Dr. Ana Assunção for the kind gift of seeds, as well as A. Degueldre and B. Bosman for technical support in ICP‐AES analyses. We thank V. Nicoloso for the analysis of splicing using raw RNA‐Seq data. We also thank Prof. N. Verbruggen, Dr. M. Scheepers and Dr. S. Fanara for helpful discussions. Funding was provided by the “Fonds de la Recherche Scientifique‐FNRS” (MIS‐F.4511.16, CDR J.0009.17, PDR‐T0120.18, PDR‐T.0104.22 to M. H.), the University of Liège (SFRD‐12/03) (M. H.) and the Belgian Program on Interuniversity Attraction Poles (IAP no. P7/44) (M. H.). M. H. was Senior Research Associate of the F.R.S.‐FNRS. J.S. was doctoral fellow of the FNRS. The authors wish to thank the COST ACTION 19116 PLANTMETALS for efficient networking and discussion. bzip19bzip23 AhbZIP19
Ahmadi, H., Corso, M., Weber, M., Verbruggen, N. & Clemens, S. (2018) CAX1 suppresses cd-induced generation of reactive oxygen species in Arabidopsis halleri. Plant, Cell & Environment, 41, 2435–2448.
Alloway, B. (2008) Zinc in soils and crop nutrition, 2nd edition, Paris, France, and Brussels, Belgium: International Fertilizer Industry Association, and International Zinc Association, pp. 1–139.
Amini, S., Arsova, B. & Hanikenne, M. (2022) The molecular basis of zinc homeostasis in cereals. Plant, Cell & Environment, 45, 1339–1361.
Andreini, C., Banci, L., Bertini, I. & Rosato, A. (2006) Zinc through the three domains of life. Journal of Proteome Research, 5, 3173–3178.
Assunção, A.G.L., Herrero, E., Lin, Y.-F., Huettel, B., Talukdar, S., Smaczniak, C. et al. (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107, 10296–10301.
Assunção, A.G.L., Schat, H. & Aarts, M.G.M. (2014) Regulation of the adaptation to zinc deficiency in plants. Plant Signaling & Behavior, 5, 1553–1555.
Baliardini, C., Meyer, C.L., Salis, P., Saumitou-Laprade, P. & Verbruggen, N. (2015) CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis Spp. Plant Physiology, 169, 549–559.
Barberon, M., Dubeaux, G., Kolb, C., Isono, E., Zelazny, E. & Vert, G. (2014) Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proceedings of the National Academy of Sciences, 111, 8293–8298.
Barberon, M., Zelazny, E., Robert, S., Conéjéro, G., Curie, C., Friml, J. et al. (2011) Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences, 108, 450–458.
Bert, V., Bonnin, I., Saumitou-Laprade, P., De Laguérie, P. & Petit, D. (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist, 155, 47–57.
Bert, V., Macnair, M.R., De Laguerie, P., Saumitou-Laprade, P. & Petit, D. (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist, 146, 225–233.
Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W. & Verbruggen, N. (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 249, 9–18.
Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. & Lux, A. (2007) Zinc in plants. New Phytologist, 173, 677–702.
Charlier, J.B., Polese, C., Nouet, C., Carnol, M., Bosman, B., Krämer, U. et al. (2015) Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives. Journal of Experimental Botany, 66, 3865–3878.
Chen, C.L., Cui, Y., Cui, M., Zhou, W.J., Wu, H.L. & Ling, H.Q. (2018) A FIT-binding protein is involved in modulating iron and zinc homeostasis in Arabidopsis. Plant, Cell & Environment, 41, 1698–1714.
Clemens, S. (2016) How metal hyperaccumulating plants can advance Zn biofortification. Plant and Soil, 411, 111–120.
Clemens, S. (2022) The cell biology of zinc. Journal of Experimental Botany, 73, 1688–1698.
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.
Cornu, J.Y., Deinlein, U., Höreth, S., Braun, M., Schmidt, H., Weber, M. et al. (2014) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytologist, 206, 738–750.
Corso, M., An, X., Jones, C.Y., Gonzalez-Doblas, V., Schvartzman, M.S., Malkowski, E. et al. (2021) Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. New Phytologist, 230, 669–682.
Corso, M., Schvartzman, M.S., Guzzo, F., Souard, F., Malkowski, E., Hanikenne, M. et al. (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytologist, 218, 283–297.
Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P. et al. (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology, 144, 1052–1065.
Curtis, M.D. & Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology, 133, 462–469.
Czechowski, T., Bari, R.P., Stitt, M., Scheible, W.-R. & Udvardi, M.K. (2004) Real-time RT-PCR profiling of over 1400 arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. The Plant Journal, 38, 366–379.
Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T.H. et al. (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. The Plant Cell, 24, 708–723.
Desbrosses-Fonrouge, A.G., Voigt, K., Schröder, A., Arrivault, S., Thomine, S. & Krämer, U. (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Letters, 579, 4165–4174.
Dong, C., He, F., Berkowitz, O., Liu, J., Cao, P., Tang, M. et al. (2018) Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice (Oryza sativa). The Plant Cell, 30, 2267–2285.
Dräger, D.B., Desbrosses-Fonrouge, A.G., Krach, C., Chardonnens, A.N., Meyer, R.C., Saumitou-Laprade, P. et al. (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. The Plant Journal, 39, 425–439.
Dubeaux, G., Neveu, J., Zelazny, E. & Vert, G. (2018) Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Molecular Cell, 69, 953–964.
Durrett, T.P., Gassmann, W. & Rogers, E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197–205.
Evens, N.P., Buchner, P., Williams, L.E. & Hawkesford, M.J. (2017) The role of ZIP transporters and group F bZIP transcription factors in the zn-deficiency response of wheat (Triticum aestivum). The Plant Journal, 92, 291–304.
Fanara, S., Schloesser, M., Hanikenne, M. & Motte, P. (2022) Altered metal distribution in the sr45-1 arabidopsis mutant causes developmental defects. The Plant Journal, 110, 1332–1352.
Fasani, E., DalCorso, G., Varotto, C., Li, M., Visioli, G., Mattarozzi, M. et al. (2017) The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. New Phytologist, 214, 1614–1630.
Frérot, H., Faucon, M.P., Willems, G., Godé, C., Courseaux, A., Darracq, A. et al. (2010) GenetiGenetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions. New Phytologist, 187, 355–367.
Halimaa, P., Lin, Y.F., Ahonen, V.H., Blande, D., Clemens, S., Gyenesei, A. et al. (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environmental Science & Technology, 48, 3344–3353.
Hanikenne, M. & Bouché, F. (2023) Iron and zinc homeostasis in plants: a matter of trade-offs. Journal of Experimental Botany, 74, 5426–5430.
Hanikenne, M., Esteves, S.M., Fanara, S. & Rouached, H. (2021) Coordinated homeostasis of essential mineral nutrients: a focus on iron. Journal of Experimental Botany, 72, 2136–2153.
Hanikenne, M., Kroymann, J., Trampczynska, A., Bernal, M., Motte, P., Clemens, S. et al. (2013) Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genetics, 9, e1003707.
Hanikenne, M. & Nouet, C. (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology, 14, 252–259.
Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P. et al. (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391–395.
Hänsch, R. & Mendel, R.R. (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259–266.
Haydon, M.J., Kawachi, M., Wirtz, M., Hillmer, S., Hell, R. & Krämer, U. (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. The Plant Cell, 24, 724–737.
Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J. et al. (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in arabidopsis. The Plant Cell, 16, 1327–1339.
Inaba, S., Kurata, R., Kobayashi, M., Yamagishi, Y., Mori, I., Ogata, Y. et al. (2015) Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to zn deficiency in roots. The Plant Journal, 84, 323–334.
Krämer, U. (2010) Metal hyperaccumulation in plants. Annual review of plant biology, 61, 517–534.
Krämer, U., Talke, I.N. & Hanikenne, M. (2007) Transition metal transport. FEBS Letters, 581, 2263–2272.
Lee, S., Lee, J., Ricachenevsky, F.K., Punshon, T., Tappero, R., Salt, D.E. et al. (2021) Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana. Plant Journal, 108, 1162–1173.
Lilay, G.H., Castro, P.H., Campilho, A. & Assunção, A.G.L. (2019) The arabidopsis bZIP19 and bZIP23 activity requires zinc deficiency - insight on regulation from complementation lines. Frontiers in Plant Science, 9, 1955.
Lilay, G.H., Castro, P.H., Guedes, J.G., Almeida, D.M., Campilho, A., Azevedo, H. et al. (2020) Rice F-bZIP transcription factors regulate the zinc deficiency response. Journal of Experimental Botany, 71, 3664–3677.
Lilay, G.H., Persson, D.P., Castro, P.H., Liao, F., Alexander, R.D., Aarts, M.G.M. et al. (2021) Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nature Plants, 7, 137–143.
Lin, Y.F., Liang, H.M., Yang, S.Y., Boch, A., Clemens, S., Chen, C.C. et al. (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182, 392–404.
Merlot, S., Garcia de la Torre, V.S. & Hanikenne, M. (2021) Physiology and molecular biology of trace element hyperaccumulation. In van der Ent, A., Baker, A. J. M., Echevarria, G., Simonnot, M.-O., Morel, J. L. (Eds.) Agromining: Farming for metals - extracting unconventional resources using plants, 2d edition. Springer Nature Switzerland AG, pp. 93–116.
Meyer, C.L., Juraniec, M., Huguet, S., Chaves-Rodriguez, E., Salis, P., Isaure, M.P. et al. (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany, 66, 3215–3227.
Milner, M.J., Seamon, J., Craft, E. & Kochian, L.V. (2013) Transport properties of members of the ZIP family in plants and their role in zn and mn homeostasis. Journal of Experimental Botany, 64, 369–381.
Nazri, A.Z., Griffin, J.H.C., Peaston, K.A., Alexander-Webber, D.G.A. & Williams, L.E. (2017) F-group bZIPs in barley-a role in zn deficiency. Plant, Cell & Environment, 40, 2754–2770.
Nouet, C., Charlier, J.-B., Carnol, M., Bosman, B., Farnir, F., Motte, P. et al. (2015) Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany, 66, 5783–5795.
Ossowski, S., Schwab, R. & Weigel, D. (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal, 53, 674–690.
Pauwels, M., Vekemans, X., Gode, C., Frérot, H., Castric, V. & Saumitou-Laprade, P. (2012). Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytologist, 193(4), 916–928.
Pineau, C., Loubet, S., Lefoulon, C., Chalies, C., Fizames, C., Lacombe, B. et al. (2012) Natural variation at the FRD3 MATE transporter locus reveals Cross-Talk between fe homeostasis and zn tolerance in Arabidopsis thaliana. PLoS Genetics, 8, e1003120.
Remy, E., Cabrito, T.R., Batista, R.A., Hussein, M.A.M., Teixeira, M.C., Athanasiadis, A. et al. (2014) Intron retention in the 5′UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in arabidopsis. PLoS Genetics, 10, e1004375.
Rengel, Z., Cakmak, I. & White, P.J. (2023) Marschner′s mineral nutrition of plants, 4th edn. London: Academic Press.
Schvartzman, M.S., Corso, M., Fataftah, N., Scheepers, M., Nouet, C., Bosman, B. et al. (2018) Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri. New Phytologist, 218, 269–282.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 18, 1121–1133.
Shahzad, Z., Gosti, F., Frérot, H., Lacombe, E., Roosens, N., Saumitou-Laprade, P. et al. (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genetics, 6, e1000911.
Shahzad, Z., Ranwez, V., Fizames, C., Marquès, L., Le Martret, B., Alassimone, J. et al. (2013) Plant defensin type 1 (PDF1): protein promiscuity and expression variation within the arabidopsis genus shed light on zinc tolerance acquisition in arabidopsis halleri. New Phytologist, 200, 820–833.
Sinclair, S.A. & Krämer, U. (2012) The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1823, 1553–1567.
Spielmann, J., Ahmadi, H., Scheepers, M., Weber, M., Nitsche, S., Carnol, M. et al. (2020) The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. Plant, Cell & Environment, 43, 2143–2157.
Spielmann, J., Cointry, V., Devime, F., Ravanel, S., Neveu, J. & Vert, G. (2022) Differential metal sensing and metal-dependent degradation of the broad spectrum root metal transporter IRT1. Plant Journal, 112, 1252–1265.
Spielmann, J., Detry, N., Thiebaut, N., Jadoul, A., Schloesser, M., Motte, P. et al. (2022) ZRT-IRT-Like PROTEIN 6 expression perturbs local ion homeostasis in flowers and leads to anther indehiscence and male sterility. Plant, Cell and Environment, 45, 206–219.
Spielmann, J., Fanara, S., Cotelle, V., Vert, G. (2023) Multilayered regulation of iron homeostasis in arabidopsis. Frontiers in Plant Science, 14, 1250588.
Stanton, C., Rodríguez-Celma, J., Krämer, U., Sanders, D. & Balk, J. (2023) BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. Journal of Experimental Botany, 74, 5767–5782.
Stanton, C., Sanders, D., Krämer, U. & Podar, D. (2022) Zinc in plants: integrating homeostasis and biofortification. Molecular Plant, 15, 65–85.
Stein, R.J., Höreth, S., de Melo, J.R.F., Syllwasschy, L., Lee, G., Garbin, M.L. et al. (2017) Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytologist, 213, 1274–1286.
Suryawanshi, V., Talke, I.N., Weber, M., Eils, R., Brors, B., Clemens, S. et al. (2016) Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics, 17, 1034.
Talke, I.N., Hanikenne, M. & Krämer, U. (2006) Zinc-Dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 142, 148–167.
Thiébaut, N. & Hanikenne, M. (2022) Zinc deficiency responses: bridging the gap between arabidopsis and dicotyledonous crops. Journal of Experimental Botany, 73, 1699–1716.
Tóth, B., Veres, S., Bakonyi, N., Gajdos, E., Marozsan, M. & Levai, L. (2012) Industrial side-products as possible soil-amendments. Journal of Environmental Biology, 33, 425–429.
Uraguchi, S., Weber, M. & Clemens, S. (2019) Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments. Plant, Cell & Environment, 42, 2003–2014.
Verbruggen, N., Hermans, C. & Schat, H. (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364–372.
Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.-F. et al. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14, 1223–1233.
Wang, Y., Salt, D.E., Koornneef, M. & Aarts, M.G.M. (2022) Construction and analysis of a Noccaea caerulescens TILLING population. BMC Plant Biology, 22, 360.
Willems, G., Dräger, B., Courbot, M., Godé, C., Verbruggen, N. & Saumitou-Laprade, P. (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics, 176, 659–674.
Willems, G., Frérot, H., Gennen, J., Salis, P., Saumitou-Laprade, P. & Verbruggen, N. (2010) Quantitative trait loci analysis of mineral element concentrations in anArabidopsis halleri× Arabidopsis lyrata petraeaF2progeny grown on cadmium-contaminated soil. New Phytologist, 187, 368–379.
Wintermans, J.F.G.M. & De Mots, A. (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)—Biophysics including Photosynthesis, 109, 448–453.
Zhang, W., Du, B., Liu, D. & Qi, X. (2014) Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene. Biochemical and Biophysical Research Communications, 455, 312–317.
Zhu, Y., Dai, Y., Jing, X., Liu, X. & Jin, C. (2022) Inhibition of BRUTUS enhances plant tolerance to zn toxicity by upregulating pathways related to iron nutrition. Life, 12, 216.