Vegetation degradation alters soil physicochemical properties and potentially affects ecosystem services in green spaces of a tropical megacity (Lubumbashi, DR Congo)
Vegetated soil, Bare soil, Soil qualities ,Ecosystem services, Urban green spaces
Abstract :
[en] Urban soils are degraded by various human pressures, including vegetation degradation, leading to changes in
physical and chemical characteristics and affecting important ecosystem services. Soil physical properties are an
important fertility control parameter, providing the basis for sustainable soil use in urban conditions; however,
they do not receive sufficient attention in work on tropical cities. We assessed the impact of vegetation degradation in six urban green spaces (bare soils versus vegetated soils) on the physical (texture, soil bulk density and
structure) and chemical (pH, cation exchange capacity (CEC), organic carbon (OC), nitrogen (N), phosphorus (P),
potassium (K), copper (Cu) and manganese (Mn)) qualities of soils in a tropical megacity (Lubumbashi, DR
Congo). Vegetated soils presented better physical and chemical qualities than bare soils. Vegetated soils were
characterized by a high clay and silt content and a good consistency (soil structure), while bare soils were
characterized by a high sand content and high bulk density. Vegetated soils were characterized by higher pH, OC,
N, C/N ratio, CEC, P, and K. There was no significant difference in Mn or Cu between bare and vegetated soils. Cu
was highly variable between sites (from 99 ± 61 mg.kg− 1 in VS to 8559 ± 151 mg.kg− 1 in BS). Our results
demonstrate that the destruction of vegetation, leading to bare soil, negatively affects soil properties and may
interfere with ecosystem services provided by urban soils in tropical climates. The physical properties observed
in bare soils in this study, including silt, clay, and sand content, soil structure, and soil bulk density, along with
chemical properties such as soil pH, cation exchange capacity, and soil organic carbon, can influence the
ecosystem services provided by urban soils. These services include regulating water flow and nutrient cycling,
enhancing nutrient availability, and supporting ecosystem functions through the cycling of water and nutrients.
Vegetation degradation alters soil physicochemical properties and potentially affects ecosystem services in green spaces of a tropical megacity (Lubumbashi, DR Congo)
Adhikari, K., Hartemink, A.E., Linking soils to ecosystem services—a global review. Geoderma 262 (2016), 101–111, 10.1016/j.geoderma.2015.08.009.
Alongo, S., Kombele, F., Evolution de La Densité Apparente et Du Rapport C/N Du Sol Sous Les Variétés Exotiques et Locale de Manioc Dans Les Conditions Naturelles de Kisangani (R.D. Congo) Évolution de La Densité Apparente et Du Rapport c/n Du Sol Sous Les Variétés Exotiques et L. https://hal-auf.archives-ouvertes.fr/hal-00877116, 2009.
Andriamaniraka, H.L., Phosphore et la Fertilisation Phosphatée Dans les Sols Ferrallitiques à Madagascar : Amélioration de la fertilité des sols. Mémoire D'habilitation à Diriger des Recherches, 2016, Université d'Antananarivo, Antananarivo, Madagascar.
Asabere, S.B., Thorsten, Z., Kwabena, A.N., Sauer, D., Urbanization leads to increases in PH, carbonate, and soil organic matter stocks of arable soils of Kumasi, Ghana (West Africa). Front. Environ. Sci., 6(OCT), 2018, 10.3389/fenvs.2018.00119.
Assandri, D., Pampuro, N., Zara, G., Cavallo, E., Budroni, M., Suitability of composting process for the disposal and valorization of brewer's spent grain. Agriculture, 11(1), 2020, 2, 10.3390/agriculture11010002.
Bassole, Z., Yanogo, I.P., Idani, F.T., Caractérisation des sols ferrugineux tropicaux lessivés et des sols bruns eutrophes tropicaux pour l'utilisation agricole dans le bas-fond de Goundi-Djoro (Burkina Faso). Int. J. Biol. Chem. Sci. 17:1 (2023), 247–266, 10.4314/ijbcs.v17i1.18.
Blanchart, A., Séré, G., Stas, M., Contribution Des Sols à La Production de Services Écosystémiques En Milieu Urbain-Une Revue Soils Contribution to the Production of Ecosystem Services in Urban Areas-A Review. https://www.researchgate.net/publication/320806034, 2017.
Chapelle, J., Base de référence mondiale pour les ressources en sols 2014. Système international de classification des sols pour nommer les sols et élaborer des légendes de cartes pédologiques. Mise à jour 2015. Rapport sur les ressources en sols du monde-N° 106. 2018.
Chen, Y., Day, S.D., Wick, A.F., McGuire, K.J., Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity. Sci. Total Environ. 494 (2014), 329–336, 10.1016/j.scitotenv.2014.06.099.
Dominati, E., Patterson, M., Mackay, A., A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69:9 (2010), 1858–1868, 10.1016/j.ecolecon.2010.05.002.
Dominati, E., Mackay, A., Green, S., Patterson, M., A soil change-based methodology for the quantification and valuation of ecosystem services from agro -ecosystems: a case study of pastoral agriculture in New Zealand. Ecol. Econ. 100 (2014), 119–129.
Feller, C., Frossard, E., Brassard, M., Activité phosphatasique de quelques sols tropicaux à argile 1: 1. Répartition dans les fractions granulométriques. Can. J. Soil Sci. 74:2 (1994), 121–129 www.nrcresearchpress.com.
Ferland, A., La conservation de la biodiversité en milieu urbain: comment aménager les villes du monde. 2015, Université de Sherbrooke, Essai 105p.
Ferreira, C.S.S., Walsh, R.P.D., Ferreira, A.J.D., Degradation in Urban Areas. Current Opinion in Environmental Science and Health. 2018, Elsevier B.V, 10.1016/j.coesh.2018.04.001.
Grosbellet, C., Evolution et effets sur la structuration du sol de la matière organique apportée en grande quantité. Doctoral dissertation, 2008, Université d'Angers.
Ibrahim, R.L., Al-Mulali, U., Ajide, K.B., Mohammed, A., Al-Faryan, M.A.S., The implications of food security on sustainability: do trade facilitation, population growth, and institutional quality make or mar the target for SSA?. Sustainability, 15(3), 2023, 2089, 10.3390/su15032089.
Jim, C.Y., Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ. Conserv. 20:1 (1993), 35–49.
Jim, C.Y., Physical and Chemical Properties of a Hong Kong Roadside Soil in Relation to Urban Tree Growth. vol. 2, 1998.
Joimel, S., Cortet, J., Jolivet, C.C., Saby, N.P.A., Chenot, E.D., Branchu, P., Consalès, J.N., Lefort, C., Morel, J.L., Schwartz, C., Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 545–546:March (2016), 40–47, 10.1016/j.scitotenv.2015.12.035.
Kalombo, K., Occurence Des Intensités Des Pluies et Leurs Effets Sur l'environnement Dans Une Région Tropicale (Région de Lubumbashi, Sud-Est de La R.D. Du Congo). 2021, Géo-Eco-Trop, 17–28.
Lauf, S., Haase, D., Kleinschmit, B., Linkages between ecosystem services provisioning, urban growth and shrinkage - a modeling approach assessing ecosystem service trade-offs. Ecol. Indic. 42 (2014), 73–94, 10.1016/j.ecolind.2014.01.028.
Lehmann, A., Stahr, K., Nature and significance of anthropogenic urban soils. J. Soils Sediments 7:4 (2007), 247–260, 10.1065/jss2007.06.235.
Malaisse, F., Se Nourrir En Forêt Claire Africaine: Approche Écologique et Nutritionnelle. 1997.
Malaisse, F., Malaisse-Mousset, M., Schorochoff, G., Analyse de la pluviosité à Lubumbashi et dans ses environs immédiats. Géo-Eco-Trop Rev. Int. d'écol. Géogr. Trop. Tervuren 2:3 (1978), 301–315.
McBratney, A., Field, D.J., Koch, A., The dimensions of soil security. Geoderma 213 (2014), 203–213, 10.1016/j.geoderma.2013.08.013.
Mensah, C.A., Urban Green spaces in Africa: nature and challenges. Int. J. Ecosyst. 2014:1 (2014), 1–11, 10.5923/j.ije.20140401.01.
Moncada, M.P., Gabriels, D., Lobo, D., Rey, J.C., Cornelis, W.M., Visual field assessment of soil structural quality in tropical soils. Soil Tillage Res. 139 (2014), 8–18, 10.1016/j.still.2014.01.002.
Morel, J.L., Chenu, C., Lorenz, K., Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 15 (2015), 1659–1666, 10.1007/s11368-014-0926-0.
Mpinda, M.T., Kisimba, T.N., Mwamba, T.M., Kasongo, E.L.M., Kaniki, A.T., Mujinya, B.B., Baseline concentrations of 11 elements as a function of land uses in surface soils of the Katangese Copperbelt area (DR Congo). 2021, 10.20944/preprints202108.0299.v1.
Mujinya, B.B., Mees, F., Boeckx, P., Bodé, S., Baert, G., Erens, H., Delefortrie, S., Verdoodt, A., Ngongo, M., Van Ranst, E., The origin of carbonates in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma 165:1 (2011), 95–105, 10.1016/j.geoderma.2011.07.009.
Nero, B.F., Anning, A.K., Variations in soil characteristics among urban green spaces in Kumasi, Ghana. Environ. Earth Sci. 77 (2018), 1–12, 10.1007/s12665-018-7441-3.
Obidike-Ugwu, E.O., Ogunwole, J.O., Eze, P.N., Derivation and validation of a pedotransfer function for estimating the bulk density of tropical forest soils. Model. Earth Syst. Environ. 9:1 (2023), 801–809, 10.1007/s40808-022-01531-2.
Owusu-Bennoah, E., Fardeau, J.C., Zapata, F., Evaluation of bioavailable phosphorus in some acid soils of Ghana using 32p isotopic exchange method. Ghana J. Agric. Sci. 33:2 (2000), 139–146.
Pickett, S.T.A., Cadenasso, M.L., Grove, J.M., Boone, C.G., Groffman, P.M., Irwin, E., Kaushal, S.S., et al. Urban ecological systems: scientific foundations and a decade of progress. J. Environ. Manag. 92:3 (2011), 331–362, 10.1016/j.jenvman.2010.08.022.
Rakotoarimanana, V., Gondard, H., Ranaivoarivelo, N., Carriere, S., Influence du pâturage sur la diversité floristique, la production et la qualité fourragères d'une savane des Hautes Terres malgaches (région de Fianarantsoa). Sécheresse 19:1 (2008), 39–46.
Roose, E., Boli, Z., Rishirumuhirwa, T., Les sols tropicaux et leur dégradation en fonction des types d’érosion. 2015, Institut de Recherche pour le Développement, Montpellier, 1–11.
Scharenbroch, B.C., Lloyd, J.E., Johnson-Maynard, J.L., Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 49:4 (2005), 283–296, 10.1016/j.pedobi.2004.12.002.
Shepherd, G., Visual Soil Assessment: Field Guide for Cropping. 2000.
Shutcha, M. N., Mukobo, R. P., Muyumba, D. K., Mpundu, M. M., Faucon, M. P., Lubalega, K. T., … & Colinet, G., 2018. Fond pédogéochimique et cartographie des pollutions des sols à Lubumbashi. Anthropisation des Paysages Katangais; Bogaert, J., Gilles, C., Gregory, M., Eds, 215-218. https://hal.archives-ouvertes.fr/hal-02265975/document.
Soumaré, M., Tack, F.M.G., Verloo, M.G., Distribution and availability of Iron, manganese, zinc, and copper in four tropical agricultural soils. Commun. Soil Sci. Plant Anal. 34:7–8 (2003), 1023–1038, 10.1081/CSS-120019107.
Sugihara, S., Shibata, M., Mvondo, Ze A.D., Araki, S., Funakawa, S., Effect of vegetation on soil C, N, P and other minerals in Oxisols at the forest-savanna transition zone of Central Africa. Soil Sci. Plant Nutr. 60:1 (2014), 45–59, 10.1080/00380768.2013.866523.
Sys, C., Schmitz, A., Région d'Elisabethville (Haut-Katanga). Notice explicative de la carte des sols et de la végétation. INEAC, Bruxelles, 1959.
Tahirou, S., Zerbo, P., Ouattara, S., Ado, M.N., Caractérisation des paramètres physico-chimiques du sol de la zone rizicole de Saga (Niamey) dans la vallée du fleuve Niger. Int. J. Biol. Chem. Sci. 16:2 (2022), 842–854, 10.4314/ijbcs.v16i2.26.
Tchotsoua, M., Informal dynamics of urban space and accelerated erosion in a west tropical setting: the case of the City of Yaounde, Cameroon. Cahiers d'Outre-Mer 47:185 (1994), 123–136, 10.3406/caoum.1994.3508.
Tchotsoua, M., Bonvallot, J., Pression urbaine et dynamique des paysages sur les mornes de Ngaoundéré (Cameroun). Espaces Trop. 16:7 (2001), 133–143 https://www.persee.fr/doc/etrop_1147-3991_2001_sem_16_7_1027.
Tomasella, J., Hodnett, M., Pedotransfer functions for tropical soils. Dev. Soil Sci. 30:C (2004), 415–429, 10.1016/S0166-2481(04)30021-8.
Useni, S.Y., Malaisse, F., Cabala, K.S., Kalumba, A.M., Mwana Yamba, A., Nkuku Khonde, C., Bogaert, J., Munyemba, F.K., Tree diversity and structure on green space of urban and peri-urban zones: the case of Lubumbashi City in the Democratic Republic of Congo. Urban Forest. Urban Green. 41:May (2019), 67–74, 10.1016/j.ufug.2019.03.008.
Van Ranst, E., Verloo, M., Demeyer, A., Pauwels, M.J., Manual for the Soil Chemistry and Fertility Laboratory-Analytical Methods for Soils and Plants, Equipment, and Management of Consumables. 1999 NUGI 835, Ghent, Belgium (ISBN 90-76603-01-4), 243 Pp.
Van Ranst, E., Baert, G., Ngongo, M., Mafuka, P., Carte Pédologique de La Région de Lubumbashi, Échelle 1:60.000. Gent, Belgique; Lubumbashi; Kinshasa, RD Congo: UGent; Hogent; UNILU; UNIKIN. 2010.
Varvel, G.E., Soil organic carbon changes in diversified rotations of the Western Corn Belt. Soil Sci. Soc. Am. J. 70:2 (2006), 426–433, 10.2136/sssaj2005.0100.
Vranken, I., Pollution et contamination des sols aux métaux lourds dues à l'industrie métallurgique à Lubumbashi : Empreinte écologique, impact paysager, pistes de gestion. 118, 2010, Université Libre de Bruxelles.
Walter, C., Bispo, A., Chenu, C., Langlais, A., Schwartz, C.C., Valorisation To Cite This Version: Les Services Écosystémiques Des Sols: Du Concept à Sa Valorisation. 2015, Cahiers Demeter, 53–68.
WRB, World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. International Union of Soil Sciences (IUSS), International Union of Soil Sciences (IUSS), 4th ed., 2022 Vienna, Austria.
Zhang, J., Li, S., Sun, X., Tong, J., Fu, Z., Li, J., Sustainability of urban soil management: analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability, 11(5), 2019, 1395, 10.3390/su11051395.
Zhao, D., Li, F., Wang, R., The effects of different urban land use patterns on soil microbial biomass nitrogen and enzyme activities in urban area of Beijing. China Acta Ecol. Sin. 32:3 (2012), 144–149, 10.1016/j.chnaes.2012.04.005.