[en] Atmospheric carbon dioxide (CO2) is increasing, and this affects plant photosynthesis and biomass production. Under elevated CO2 conditions (eCO2), plants need to cope with an unbalanced carbon-to-nitrogen ratio (C/N) due to a limited C sink strength and/or the reported constrains in leaf N. Here, we present a physiological and metabolic analysis of ammonium (NH4+)-tolerant pea plants (Pisum sativum L., cv. snap pea) grown hydroponically with moderate or high NH4+ concentrations (2.5 or 10 mM), and under two atmospheric CO2 concentrations (400 and 800 ppm). We found that the photosynthetic efficiency of the NH4+ tolerant pea plants remain intact under eCO2 thanks to the capacity of the plants to maintain the foliar N status (N content and total soluble proteins), and the higher C-skeleton requirements for NH4+ assimilation. The capacity of pea plants grown at 800 ppm to promote the C allocation into mobile pools of sugar (mainly sucrose and glucose) instead of starch contributed to balancing plant C/N. Our results also support previous observations: plants exposed to eCO2 and NH4+ nutrition can increase of stomatal conductance. Considering the C and N source-sink balance of our plants, we call for exploring a novel trait, combining NH4+ tolerant plants with a proper NH4+ nutrition management, as a way for a better exploitation of eCO2 in C3 crops.
Jauregui, Ivan ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Rivero-Marcos, Mikel; Department of Sciences, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadía, Pamplona 31006, Spain
Aranjuelo, Iker; Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Mutilva Baja E-31192, Spain
Aparicio-Tejo, Pedro M; Department of Sciences, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadía, Pamplona 31006, Spain
Lasa, Berta; Department of Sciences, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadía, Pamplona 31006, Spain. Electronic address: berta.lasa@unavarra.es
Ariz, Idoia; Department of Sciences, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre, Campus Arrosadía, Pamplona 31006, Spain
Language :
English
Title :
Could ammonium nutrition increase plant C-sink strength under elevated CO2 conditions?
This work has been funded by the Spanish National Research and Development Programme: AGL2009–13339-C02–02, AGL2011–30386-C02–02 and AGL2012–37815-C05–05, RTI2018–094623-B-C22.Ivan Jauregui acknowledge financial support of the Belgian FNRS (Fonds de la Recherch? Scientifique) grant number 1.B.216.20F. This work has been funded by the Spanish National Research and Development Programme: AGL2009?13339-C02?02, AGL2011?30386-C02?02 and AGL2012?37815-C05?05, RTI2018?094623-B-C22. We thank G. Garijo from Universidad P?blica de Navarra (UPNA) for technical assistance. Besides, we also thanks the referees and editor the constructive comments to improve our manuscript.Ivan Jauregui acknowledge financial support of the Belgian FNRS (Fonds de la Recherché Scientifique) grant number 1.B.216.20F.
J. Shukla, R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., HaugShukla, R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, (2019). https://doi.org/10.1016/j.plantsci.2016.04.008.
Franks, P.J., Adams, M.A., Amthor, J.S., Barbour, M.M., Berry, J.A., Ellsworth, D.S., Farquhar, G.D., Ghannoum, O., Lloyd, J., McDowell, N., Norby, R.J., Tissue, D.T., von Caemmerer, S., Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. N. Phytol. 197 (2013), 1077–1094, 10.1111/nph.12104.
Sage, R.F., Sharkey, T.D., Seemann, J.R., Acclimation of photosynthesis to elevated CO2 in five C 3 species. Plant Physiol. 89 (1989), 590–596, 10.1104/pp.89.2.590.
Ainsworth, E.A., Rogers, A., Nelson, R., Long, S.P., Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric. Meteorol. 122 (2004), 85–94, 10.1016/j.agrformet.2003.09.002.
Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., Ort, D.R., Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 60 (2009), 2859–2876, 10.1093/jxb/erp096.
Feng, Z., Rütting, T., Pleijel, H., Wallin, G., Reich, P.B., Kammann, C.I., Newton, P.C.D., Kobayashi, K., Luo, Y., Uddling, J., Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Chang. Biol. 21 (2015), 3152–3168, 10.1111/gcb.12938.
Bloom, A.J., Carbon dioxide enrichmient inhibits nitrate assimilation in wheat and Arabidopsis. Sci. (80) 328 (2010), 899–904.
Busch, F.A., Sage, R.F., Farquhar, G.D., Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat. Plants 4 (2018), 46–54, 10.1038/s41477-017-0065-x.
Jauregui, I., Aparicio-Tejo, P.M., Baroja, E., Avila, C., Aranjuelo, I., Elevated CO2 improved the growth of a double nitrate reductase defective mutant of Arabidopsis thaliana: The importance of maintaining a high energy status. Environ. Exp. Bot., 140, 2017, 10.1016/j.envexpbot.2017.06.003.
Bloom, A., Burger, M., Kimball, B.A., Pinter, P., Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang, 2014, 477–480, 10.1038/nclimate2183.
Andrews, M., Condron, L.M., Kemp, P.D., Topping, J.F., Lindsey, K., Hodge, S., Raven, J.A., Elevated CO2 effects on nitrogen assimilation and growth of C3 vascular plants are similar regardless of N-form assimilated. J. Exp. Bot. 70 (2019), 683–690, 10.1093/jxb/ery371.
Bennett, W.F., Pesek, J., Hanway, J.J., Effect of nitrate and ammonium on growth of corn in nutrient solution sand culture. Agron. J., 1964, 342–345, 10.2134/agronj1964.00021962005600030027x.
Esteban, R., Ariz, I., Cruz, C., Moran, J.F., Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 248 (2016), 92–101, 10.1016/J.PLANTSCI.2016.04.008.
Ariz, I., Artola, E., Asensio, A.C., Cruchaga, S., Aparicio-Tejo, P.M., Moran, J.F., High irradiance increases NH 4+ tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation. J. Plant Physiol. 168 (2011), 1009–1015, 10.1016/j.jplph.2010.11.022.
Setién, I., Fuertes-Mendizabal, T., González, A., Aparicio-Tejo, P.M., González-Murua, C., González-Moro, M.B., Estavillo, J.M., High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. J. Plant Physiol. 170 (2013), 758–771, 10.1016/j.jplph.2012.12.015.
Rubio-Asensio, J.S., Bloom, A.J., Inorganic nitrogen form: A major player in wheat and Arabidopsis responses to elevated CO2. J. Exp. Bot. 68 (2017), 2611–2625, 10.1093/jxb/erw465.
Cruz, C., Domínguez-Valdivia, M.D., Aparicio-Tejo, P.M., Lamsfus, C., Bio, A., Martins-Loução, M.A., Moran, J.F., Intra-specific variation in pea responses to ammonium nutrition leads to different degrees of tolerance. Environ. Exp. Bot. 70 (2011), 233–243, 10.1016/j.envexpbot.2010.09.014.
Rigaud, J., Puppo, A., Indole-3-acetic acid catabolism by soybean bacteroids bacteroid preparations from nodules of. J. Gen. Microbiol 88 (1975), 223–228.
Mengel, E.A., Kirkby, K., Sulphur in physiology. Princ. Plant Nutr., 1987, Springer, US, 331–342, 10.1007/s11102-020-01119-y.
O′Neal, D., Joy, K.W., lutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima. Arch. Biochem. Biophys. 1 (1973), 113–122 https://doi.org/DOI: 10.1016/0003-9861(73)90435-9.
Schjoerring, J.K., Husted, S., Mäck, G., Mattsson, M., The regulation of ammonium translocation in plants. J. Exp. Bot. 53 (2002), 883–890.
Cruz, C., Bio, A.F.M., Domínguez-Valdivia, M.D., Aparicio-Tejo, P.M., Lamsfus, C., Martins-Loução, M.A., How does glutamine synthetase activity determine plant tolerance to ammonium?. Planta 223 (2006), 1068–1080, 10.1007/s00425-005-0155-2.
Baslam M, S.-S.A., Mitsui, T., Hodges, M., Priesack, E., Herritt, M.T., Aranjuelo, I., Photosynthesis in a changing global climate: Scaling up and scaling down in crops. Front. Plant Sci. 11 (2020), 1–29, 10.3389/fpls.2020.00882.
Aranjuelo, I., Cabrerizo, P.M., Arrese-Igor, C., Aparicio-Tejo, P.M., Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3− fertilization). Environ. Exp. Bot. 95 (2013), 34–40, 10.1016/j.envexpbot.2013.06.002.
Torralbo, F., González-Moro, M.B., Baroja-Fernández, E., Aranjuelo, I., González-Murua, C., Differential regulation of stomatal conductance as a strategy to cope with ammonium fertilizer under ambient versus elevated CO2. Front. Plant Sci., 10, 2019, 10.3389/fpls.2019.00597.
Vega-Mas, I., Marino, D., Sánchez-Zabala, J., González-Murua, C., Estavillo, J.M., González-Moro, M.B., CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Sci. 241 (2015), 32–44, 10.1016/j.plantsci.2015.09.021.
Loladze, I., Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. Elife, 2014, 1–29, 10.7554/eLife.02245.
Aranjuelo, I., Erice, G., Sanz-Sáez, A., Abadie, C., Gilard, F., Gil-Quintana, E., Avice, J.C., Staudinger, C., Wienkoop, S., Erice, J.L., Bourguignon, J., Irigoyen, J.J., Tcherkez, G., Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). Plant Cell Environ. 38 (2015), 2780–2794, 10.1111/PCE.12587/SUPPINFO.
Stitt, M., Krapp, A., The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environ. 22 (1999), 583–621.
Ainsworth, E.A., Rogers, A., Nelson, R., Long, S.P., Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric. For. Meteorol. 122 (2004), 85–94, 10.1016/j.agrformet.2003.09.002.
Flexas, J., Díaz-Espejo, A., Galmés, J., Kaldenhoff, R., Medrano, H., Ribas-Carbo, M., Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant. Cell Environ. 30 (2007), 1284–1298, 10.1111/j.1365-3040.2007.01700.x.
Ainsworth, E.A., Rogers, A., The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant. Cell Environ. 30 (2007), 258–270, 10.1111/j.1365-3040.2007.01641.x.
Sathee, L., Jain, V., Kheterpal, S., Verma, R., Influence of elevated carbon dioxide and ammonium nutrition on growth and nitrogen metabolism in wheat (Triticum aestivum). Indian J. Agric. Sci., 86, 2016 〈http://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/55170〉.
Wang, F., Gao, J., Yong, J.W.H., Wang, Q., Ma, J., He, X., Higher atmospheric CO2 levels favor C3 plants over C4 plants in utilizing ammonium as a nitrogen source. Front. Plant Sci. 11 (2020), 1–16, 10.3389/fpls.2020.537443.
Xu, Z., Jiang, Y., Jia, B., Zhou, G., Elevated-CO2 response of stomata and its dependence on environmental factors. Front. Plant Sci., 7, 2016, 10.3389/FPLS.2016.00657.
Sathee, L., Jain, V., Interaction of elevated CO2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. Protoplasma 1 (2021), 1–14, 10.1007/S00709-021-01692-4/FIGURES/5.
Jauregui, I., Aparicio-Tejo, P.M., Avila, C., Cañas, R.C., Sakalauskiene, S., Aranjuelo, I., Root–shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2] conditions. Physiol Plantarum 158 (2006), 65–79, 10.1111/ppl.12417.