[en] Vascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF). The venom was fractionated by reversed phase chromatography on FPLC system (Fast Protein Liquid Chromatography) and the eluted fractions were submitted to an ELISA assay using an anti-VEGF-F antibody, for identification of svVEGF. Positive fractions for svVEGF were submitted to SDS-PAGE and to an anion exchange chromatography to isolate the molecule. The subfractions were analyzed by ELISA and SDS-PAGE and six of them presented svVEGFs, named CdcVEGF1 (Q23-3), CdcVEGF2 (Q24-3), CdcVEGF3 (Q24-4), CdcVEGF4 (Q25-3), CdcVEGF5 (Q25-4), and CdcVEGF6 (Q25-5). Their structural characterization was accomplished by mass spectrometry analysis using MALDI-TOF to determine their molecular masses and UPLC-ESI-QTOF to determine their amino acid sequence. Interestingly, all isolated CdcVEGFs induced angiogenesis on HUVEC cells through tube formation on Matrigel when compared to culture medium (negative control). Moreover, CdcVEGF2 and CdcVEGF3 also induced a significant increase in tube formation when compared to the positive control (basic fibroblast growth factor - bFGF). Additionally, crotalid antivenom produced by the Instituto Butantan was able to recognize CdcVEGFs, demonstrating to be immunogenic. This study demonstrates that snake venom cocktail can reveal novel and important molecules, which are potential molecular tools to study diverse biological processes, such as angiogenesis.
Ferreira, Isabela Gobbo; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
Pucca, Manuela Berto; Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
Cardoso, Iara Aimê; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
de Castro Figueiredo Bordon, Karla; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
Wiezel, Gisele Adriano; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
Gobbi Amorim, Fernanda ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Rodrigues, Renata Santos; Institute of Biotechnology, Federal University of Uberlandia, UFU, Uberlandia, MG, Brazil
de Melo Rodrigues, Veridiana; Institute of Biotechnology, Federal University of Uberlandia, UFU, Uberlandia, MG, Brazil
Lucia de Campos Brites, Vera; Institute of Biology, Sector of Reptiles, Federal University of Uberlandia, UFU, Uberlandia, MG, Brazil
Rosa, José César; Protein Chemistry Center and Department of Molecular and Cell Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
Lopes, Daiana Silva; Institute Multidisciplinary in Health, Universidade Federal da Bahia, Vitoria da Conquista, BA, Brazil
Arantes, Eliane Candiani; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. Electronic address: ecabraga@fcfrp.usp.br
Language :
English
Title :
Insights into structure and function of CdcVEGFs, the vascular endothelial growth factor from Crotalus durissus collilineatus snake venom.
This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior ( CAPES , Coordination for the Improvement of Higher Education Personnel , scholarship to IGF, finance code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico ( CNPq , The National Council for Scientific and Technological Development, scholarship to MBP 307184/2020-0 and grant 306479/2017-6), Fundação de Amparo à Pesquisa do Estado de São Paulo ( FAPESP , São Paulo Research Foundation, grants 2011/23236-4, 2019/10173-6 and scholarship to GAW 2017/00586-6, and the Nucleus for Research on Animal Toxins ( NAP-TOXAN-USP , grant 12–125432.1.3).
Davis-Smyth, N.F.a.T., The Biology of Vascular Endothelial Growth Factor. 1997, Endocrine Reviwes.
Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L., Mihu, C.M., Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 59 (2018), 455–467.
Yamazaki, Y., Takani, K., Atoda, H., Morita, T., Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J. Biol. Chem. 278 (2003), 51985–51988.
Komori, Y., Nikai, T., Taniguchi, K., Masuda, K., Sugihara, H., Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (Aspic viper). Biochemistry 38 (1999), 11796–11803.
Gasmi, A., Abidi, F., Srairi, N., Oijatayer, A., Karoui, H., Elayeb, M., Purification and characterization of a growth factor-like which increases capillary permeability from Vipera lebetina venom. Biochem. Biophys. Res. Commun. 268 (2000), 69–72.
Aloui, Z., Hoos, S., Geretti, E., Kharmachi, H., Haumont, P.Y., Mejdoub, H., Klagsbrun, M., England, P., Gasmi, A., Novel svVEGF isoforms from Macrovipera lebetina venom interact with neuropilins. Biochem. Biophys. Res. Commun. 389 (2009), 10–15.
Suto, K., Yamazaki, Y., Morita, T., Mizuno, H., Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. J. Biol. Chem. 280 (2005), 2126–2131.
Yamazaki, Y., Matsunaga, Y., Tokunaga, Y., Obayashi, S., Saito, M., Morita, T., Snake venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary their structures and functions among species. J. Biol. Chem. 284 (2009), 9885–9891.
Tokunaga, Y., Yamazaki, Y., Morita, T., Specific distribution of VEGF-F in Viperinae snake venoms: isolation and characterization of a VGEF-F from the venom of Daboia russelli siamensis. Arch. Biochem. Biophys., 439, 2005.
Takahashi, H., Shibuya, M., The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond.) 109 (2005), 227–241.
Gasmi, A., Bourcier, C., Aloui, Z., Srairi, N., Marchetti, S., Gimond, C., Wedge, S.R., Hennequin, L., Pouysségur, J., Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signalling. J. Biol. Chem. 277 (2002), 29992–29998.
Calvete, J.J., Juárez, P., Sanz, L., Snake venomics. Strategy and applications. J. Mass Spectrom. 42 (2007), 1405–1414.
Scopes, R.K., Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 59 (1974), 277–282.
Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4 (1995), 2411–2423.
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970), 680–685.
Edman, P., Begg, G.A., A protein sequenator. Eur. J. Biochem. 1 (1967), 80–91.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997), 3389–3402.
Consortium, U., UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47 (2019), D506–D515.
Wiezel, G.A., Shibao, P.Y.T., Cologna, C.T., Morandi Filho, R., Ueira-Vieira, C., De Pauw, E., Quinton, L., Arantes, E.C., In-depth venome of the Brazilian rattlesnake Crotalus durissus terrificus: an integrative approach combining its venom gland transcriptome and venom proteome. J. Proteome Res. 17 (2018), 3941–3958.
Oliveira IS, C.I., Bordon, K.C.F., Carone, S.E.I., Boldrini-França, J., Pucca, M.B., Zoccal, K.F., Faccioli, L.H., Sampaio, S.V., Rosa, J.C., Arantes, E.C., Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J. Proteonomics 191 (2019), 153–165.
Grant, D.S., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G.R., Kleinman, H.K., Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58 (1989), 933–943.
Yeh, C.H., Peng, H.C., Yang, R.S., Huang, T.F., Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol. Pharmacol. 59 (2001), 1333–1342.
Medeiros, J.M., Oliveira, I.S., Ferreira, I.G., Alexandre-Silva, G.M., Cerni, F.A., Zottich, U., Pucca, M.B., Fatal rattlesnake envenomation in northernmost Brazilian Amazon: a case report and literature overview. Reports, 3, 2020.
Boldrini-França J, C.-N.C., Silva, M.M., Rodrigues, R.S., De La Torre, P., Pérez, A., Soares, A.M., Zingali, R.B., Nogueira, R.A., Rodrigues, V.M., Sanz, L., Calvete, J.J., Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J. Proteonomics, 9, 2010.
Oliveira, I.S., Cardoso, I.A., Bordon, K.C.F., Carone, S.E.I., Boldrini-França, J., Pucca, M.B., Zoccal, K.F., Faccioli, L.H., Sampaio, S.V., Rosa, J.C., Arantes, E.C., Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J. Proteonomics 191 (2019), 153–165.
Aebersold, R., Goodlett, D.R., Mass spectrometry in proteomics. Chem. Rev. 101 (2001), 269–295.
Zhong, S., Wu, J., Cui, Y., Li, R., Zhu, S., Rong, M., Lu, Q., Lai, R., Vascular endothelial growth factor from Trimeresurus jerdonii venom specifically binds to VEGFR-2. Biochimie 116 (2015), 1–7.
Hitomi Nakamura, T.M., Imamura, Takahisa, Toriba, Michihisa, Chijiwa, Takahito, Ohno, Motonori, Oda-Ueda, Naoko, Discovery of a novel vascular endothelial growth factor (VEGF) with no af fi nity to heparin in Gloydius tsushimaensis venom. Toxicon, 2014, 86.
Faure, G., Bon, C., Several isoforms of crotoxin are present in individual venoms from the South American rattlesnake Crotalus durissus terrificus. Toxicon 25 (1987), 229–234.
Aird, S.D., Kaiser, I.I., Lewis, R.V., Kruggel, W.G., Rattlesnake presynaptic neurotoxins: primary structure and evolutionary origin of the acidic subunit. Biochemistry 24 (1985), 7054–7058.
Yamazaki, Y., Matsunaga, Y., Nakano, Y., Morita, T., Identification of vascular endothelial growth factor receptor-binding protein in the venom of eastern cottonmouth. A new role of snake venom myotoxic Lys49-phospholipase A2. J. Biol. Chem. 280 (2005), 29989–29992.
Yamazaki, Y., Nakano, Y., Imamura, T., Morita, T., Augmentation of vascular permeability of VEGF is enhanced by KDR-binding proteins. Biochem. Biophys. Res. Commun. 355 (2007), 693–699.
Chen, Y.L., Tsai, I.H., Hong, T.M., Tsai, S.H., Crotalid venom vascular endothelial growth factors has preferential affinity for VEGFR-1. Characterization of Protobothrops mucrosquamatus venom VEGF. Thromb. Haemostasis 93 (2005), 331–338.
Aloui, Z.e.a., Novel svVEGF isoforms from Macrovipera lebetina venom interact with neuropilins. Biochem. Biophys. Res. Commun. 389 (2009), 5–10.
Barbouche, R., Marrakchi, N., Mansuelle, P., Krifi, M., Fenouillet, E., Rochat, H., el Ayeb, M., Novel anti-platelet aggregation polypeptides from Vipera lebetina venom: isolation and characterization. FEBS Lett. 392 (1996), 6–10.
Laustsen, A.H., María Gutiérrez, J., Knudsen, C., Johansen, K.H., Bermúdez-Méndez, E., Cerni, F.A., Jürgensen, J.A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M.R., Lomonte, B., Engmark, M., Pucca, M.B., Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 146 (2018), 151–175.
Bordon, K.C.F., Cologna, C.T., Fornari-Baldo, E.C., Pinheiro-Júnior, E.L., Cerni, F.A., Amorim, F.G., Anjolette, F.A.P., Cordeiro, F.A., Wiezel, G.A., Cardoso, I.A., Ferreira, I.G., de Oliveira, I.S., Boldrini-França, J., Pucca, M.B., Baldo, M.A., Arantes, E.C., From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol., 11, 2020, 1132.
da-Silva-Freitas, D., Boldrini-França, J., Arantes, E.C., PEGylation: a successful approach to improve the biopharmaceutical potential of snake venom thrombin-like serine protease. Protein Pept. Lett. 22 (2015), 1133–1139.
Pinheiro-Junior, E.L., Boldrini-França, J., Takeda, A.A.S., Costa, T.R., Peigneur, S., Cardoso, I.A., Oliveira, I.S., Sampaio, S.V., de Mattos Fontes, M.R., Tytgat, J., Arantes, E.C., Towards toxin PEGylation: the example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. Int. J. Biol. Macromol. 190 (2021), 564–573.
Ferrara, N., The role of the VEGF signaling pathway in tumor angiogenesis. Marmé, D., (eds.) Tumor Angiogenesis: A Key Target for Cancer Therapy, 2019, Springer Nature, Switzerland, 212–219.
Kofler, N.M., Simons, M., Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling. F1000Prime Rep, 7, 2015, 26.
Carmeliet, P., Angiogenesis in life, disease and medicine. Nature 438 (2005), 932–936.
Shweiki, D., Itin, A., Soffer, D., Keshet, E., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359 (1992), 843–845.