[en] The18F-labeling of CF2H groups has been recently studied in radiopharmaceutical chemistry owing to the favorable nuclear and physical characteristics of the radioisotope18F for positron emission tomography (PET). Following up on the reported efficiency of the [18F]difluoromethyl benzothiazolyl-sulfone ([18F]1) as a18F-difluoromethylating reagent, we investigated the influence of structurally-related [18F]difluoromethyl heteroaryl-sulfones in the reactivity toward the photoredox C–H18F-difluoromethylation of heteroarenes under continuous-flow conditions. In the present work, six new [18F]difluoromethyl heteroaryl-sulfones [18F]5a–[18F]5f were prepared and, based on the overall radiochemical yields (RCYs), three of these reagents ([18F]5a, [18F]5c, and [18F]5f) were selected for the fully automated radiosynthesis on a FASTlab™ synthesizer (GE Healthcare) at high level of starting radioactivity. Subsequently, their efficiency as 18 F-difluoromethylating reagents was evaluated using the antiherpetic drug acyclovir as a model substrate. Our results showed that the introduction of molecular modifications in the structure of [18F]1 influenced the amount of fac-IrIII(ppy)3 and the residence time needed to ensure a complete C– H18F-difluoromethylation process. The photocatalytic C–H18F-difluoromethylation reaction with the reagents [18F]5a, [18F]5c, and [18F]5f was extended to other heteroarenes. Radical-trapping experiments demonstrated the likely involvement of radical species in the C–H 18 F-difluoromethylation process.
Funding: This work was supported by funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 675071 (ISOTOPICS) and from the University of Liège.This work was supported by funding from the European Union's Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 675071 (ISOTOPICS) and from the University of Li?ge.
Banister, S.; Roeda, D.; Dollé, F.; Kassiou, M. Fluorine-18 chemistry for PET: A concise introduction. Curr. Radiopharm. 2010, 3, 68–80.
Varlow, C.; Szames, D.; Dahl, K.; Bernard-Gauthier, V.; Vasdev, N. Fluorine-18: An untapped resource in inorganic chemistry. Chem. Commun. 2018, 54, 11835–11842.
Shukla, A.K.; Kumar, U. Positron emission tomography: An overview. J. Med. Phys. 2006, 31, 13–21.
Lin, M.; Shon, I.H.; Lin, P. Positron emission tomography: Current status and future challenges. Intern. Med. J. 2010, 40, 19–29.
Vaquero, J.J.; Kinahan, P. Positron emission tomography: Current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu. Rev. Biomed. Eng. 2015, 17, 385–414.
El-Galaly, T.C.; Gormsen, L.C.; Hutchings, M. PET/CT for staging; Past, present, and future. Semin. Nucl. Med. 2018, 48, 4–16.
Preshlock, S.; Tredwell, M.; Gouverneur, V.18F-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 2016, 116, 719–766.
Van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 2017, 46, 4709–4773.
Krishnan, H.S.; Ma, L.; Vasdev, N.; Liang, S.H.18F-Labeling of sensitive biomolecules for positron emission tomography. Chem. Eur. J. 2017, 23, 15553–15577.
Coenen, H.H.; Ermert, J.18F-Labeling innovations and their potential for clinical application. Clin. Transl. Imaging 2018, 6, 169–193.
Krüll, J.; Heinrich, M.R. [18F] Fluorine-labeled pharmaceuticals: Direct aromatic fluorination compared to multi-step strategies. Asian, J. Org. Chem. 2019, 8, 576–590.
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880.
Erickson, J.A.; McLoughlin, J.I. Hydrogen bond donor properties of the difluoromethyl group. J. Org. Chem. 1995, 60, 1626–1631.
Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. Difluoromethyl bioisostere: Examining the “lipophilic hydrogen bond donor” concept. J. Med. Chem. 2017, 60, 797–804.
Sessler, C.D.; Rahm, M.; Becker, S.; Goldberg, J.M.; Wang, F.; Lippard, S.J. CF2H, a hydrogen bond donor. J. Am. Chem. Soc. 2017, 139, 9325–9332.
Zafrani, Y.; Sod-Mariah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; et al. CF2H, a functional group-dependent hydrogen-bond donor: Is it a more or less lipophilic bioisostere of OH, SH, and CH3? J. Med. Chem. 2019, 62, 5628–5637.
Rong, J.; Ni, C.; Hu, J. Metal-catalyzed direct difluoromethylation reactions. Asian J. Org. Chem. 2017, 6, 139–152.
Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chem. Eur. J. 2017, 23, 14676–14701.
Lemos, A.; Lemaire, C.; Luxen, A. Progress in difluoroalkylation of organic substrates by visible light photoredox catalysis. Adv. Synth. Catal. 2019, 361, 1500–1537.
Koike, T.; Akita, M. Recent progress in photochemical radical di-and mono-fluoromethylation. Org. Biomol. Chem. 2019, 17, 5413–5419.
Levi, N.; Amir, D.; Greshonov, E.; Zafrani, Y. Recent progress on the synthesis of CF2H-containing derivatives. Synthesis 2019, 51, 4549–4567.
Wagner, K.; Kraatz, U.; Kugler, M.; Schrage, H.; Uhr, H. Benzazole derivatives with microbiocidal properties. Ger. Offen. DE 19523447 A1 19970102, 1997.
Mizuta, S.; Stenhagen, I.S.R.; O’Duill, M.; Wolstenhulme, J.; Kirjavainen, A.K.; Forsback, S.J.; Tredwell, M.; Sandford, G.; Moore, P.R.; Huiban, M.; et al. Catalytic decarboxylative fluorination for the synthesis of tri-and difluoromethyl arenes. Org. Lett. 2013, 15, 2648–2651.
Verhoog, S.; Pfeifer, L.; Khotavivattana, T.; Calderwood, S.; Collier, T.L.; Wheelhouse, K.; Tredwell, M.; Gouverneur, V. Silver-mediated18F-labeling of aryl-CF3 and aryl-CHF2 with18F-fluoride. Synlett 2016, 27, 25–28.
Sap, J.B.I.; Wilson, T.C.; Kee, C.W.; Straathof, N.J.W.; amEnde, C.W.; Mukherjee, P.; Zhang, L.; Genicot, C.; Gouverneur, V. Synthesis of 18 F-difluoromethylarenes using aryl boronic acids, ethyl bromofluoroacetate and [18F]fluoride. Chem. Sci. 2019, 10, 3237–3241.
Trump, L.; Lemos, A.; Lallemand, B.; Pasau, P.; Mercier, J.; Lemaire, C.; Luxen, A.; Genicot, C. Late-stage18F-difluoromethyl labeling of N-heteroaromatics with high molar activity. Angew. Chem. Int. Ed. 2019, 58, 13149–13154.
Trump. L.; Lemos, A.; Jacq, J.; Pasau, P.; Lallemand, B.; Mercier, J.; Genicot, C.; Luxen, A.; Lemaire, C. Development of a general automated flow photoredox18F-difluoromethylation of N-heteroaromatics in an AllinOne synthesizer. Org. Process Res. Dev. 2020, doi:10.1021/acs.oprd.9b00442.
Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2016, 55, 2743-2747
Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Visible-light-mediated radical oxydifluoromethylation of olefinic amides for the synthesis of CF2H-containing heterocycles. Chem. Commun. 2016, 52, 13413–13416.
Zou, G.; Wang, X. Visible-light induced di-and trifluoromethylation of N-benzamides with fluorinated sulfones for the synthesis of CF2H/CF3-containing isoquinolinediones. Org. Biomol. Chem. 2017, 15, 8748–8751.
Zhu, M.; Fu, W.; Wang, Z.; Xu, C.; Ji, B. Visible-light-mediated direct difluoromethylation of alkynoates: Synthesis of 3-difluoromethylated coumarins. Org. Biomol. Chem. 2017, 15, 9057–9060.
Zhu, M.; Fu, W.; Guo, W.; Tian, Y.; Wang, Z.; Xu, C.; Ji, B. Visible-light-induced radical di-and trifluoromethylation of β, γ-unsaturated oximes: Synthesis of di-and trifluoromethylated isoxazolines. Eur. J. Org. Chem. 2019, 2019, 1614–1619.
Zhu, M.; You, Q.; Li, R. Synthesis of CF2H-containing oxindoles via hotoredox-catalyzed radical difluoromethylation and cyclization of N-arylacrylamides. J. Fluorine Chem. 2019, doi:10.1016/j.jfluchem.2019.109391.
Sun, H.; Jiang, Y.; Yang, Y.-S.; Li, Y.-Y.; Li, L.; Wang, W.-X.; Feng, T.; Li, Z.-H.; Liu, J.-K. Synthesis of difluoromethylated 2-oxindoles and quinoline-2,4-dione via visible light-induced tandem radical cyclization of N-arylacrylamides. Org. Biomol. Chem. 2019, 17, 6629–6638.
Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Oxydifluoromethylation of alkenes by photoredox catalysis: Simple synthesis of CF2H-containing alcohols. Chem. Eur. J. 2016, 22, 1262–1265.
Carbonnel, E.; Besset, T.; Poisson, T.; Labar, D.; Pannecoucke, X.; Jubault, P.18F-Fluoroform: A18F-trifluoromethylating agent for the synthesis of SCF218F-aromatic derivatives. Chem. Commun. 2017, 53, 5706–5709.
O’Brien, J.J.; Campoli-Richards, D.M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1989, 37, 233–309.
Fenton, C.; Keating, G.M.; Lyseng-Williamson, K.A. Moxonidine. A review of its use in essential hypertension. Drugs 2006, 66, 477–496.
Frampton, J.E.; Brogden, R.N. Pentoxifylline (Oxpentifylline). A review of its therapeutic efficacy in the management of peripheral vascular and cerebrovascular disorders. Drugs Aging 1995, 7, 480–503.
Sakamoto, R.; Kashiwagi, H.; Marouka, K. The direct C–H difluoromethylation of heteroarenes based on the photolysis of hypervalent iodine(III) reagents that contain difluoroacetoxy ligands. Org. Lett. 2017, 19, 5126–5129.
Lemaire, C.; Libert, L.; Franci, X.; Genon, J.-L.; Kuci, S.; Giacomelli, F.; Luxen, A. Automated production at the curie level of no-carrier-added 6-[18F]fluoro-L-dopa and 2-[18F]fluoro-L-tyrosine on a FASTlab synthesizer. J. Label. Compd. Radiopharm. 2015, 58, 281–290.