Global warming potential; N fertilizer; N2O emissions; SOC sequestration; SPACSYS; Straw retention; Crop yield; Fertilizer applications; Greenhouse gas emissions; N fertilizers; N2O emission; Soil organic carbon sequestration; Soil organic carbon storages; Agronomy and Crop Science; Soil Science; Earth-Surface Processes
Abstract :
[en] Straw retention has been widely implemented to increase soil organic carbon (SOC) sequestration and greenhouse gas (GHG) mitigation for global agriculture. However, the combined effects of long-term straw retention on crop production, SOC sequestration and GHG emissions response to climate change remain unknown. Two nearby wheat–maize rotation field experiments in the North China Plain, combined with local weather, soil and agronomic measurements, were used to evaluate the applicability of the SPACSYS model. The model was then applied to assess the response of crop yield, SOC storage and nitrous oxide (N2O) emissions to three nitrogen fertilizer application levels (100, 200, 400 kg N ha−1) and three representative concentration pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) under straw retention for the wheat–maize rotation systems during 2021–2100. In general, the model was reasonably accurate with R2 and model efficiency (EF) ranging from 0.25 to 0.96 and 0.32–0.94, respectively. Climate change decreased wheat yield by 4–39%, while maize showed a slight increase (3%) under RCP2.6 and a decrease of 1–15% under RCP4.5 and RCP8.5. The SOC storage in the 0–20 cm soil increased at a rate of 73–195 kg C ha−1 yr−1 but decreased within the upper 1 m soil at 280–390 kg C ha−1 yr−1. Climate change reduced the positive effect of SOC sequestration except in RCP2.6 and stimulated substantial N2O emissions ranging from 1–7.5 to 2.9–23.2 kg N ha−1 yr−1, consequently, the global warming potential increased from –79–2555 to 548–9357 kg CO2-eq ha−1 yr−1 under various N fertilizer application levels. This study reveals that the negative feedback under climate change with modelling approach, and extensive efforts are needed to make adaptations to ensure food production and reduce GHG emissions in the future.
Disciplines :
Agriculture & agronomy
Author, co-author :
Wang, Shuhui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, Nan; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Xubo; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Hu, Chunsheng; Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
Wang, Yuying; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
Xiong, Wei; International Maize and Wheat Improvement Center, Sustainable AgriFood Program, Texcoco, Mexico
Zhang, Shuxiang; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Xu, Minggang; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
Wu, Lianhai; Net zero and resilient farming, Rothamsted Research, North Wyke, Okehampton, Devon, United Kingdom
Language :
English
Title :
Assessing the impacts of climate change on crop yields, soil organic carbon sequestration and N2O emissions in wheat–maize rotation systems
NSCF - National Natural Science Foundation of China
Funding text :
This study was supported by the National Natural Science Foundation of China (42177341), the UK–China Joint Centre for Sustainable Intensification in Agriculture (CSIA) and National Key R&D Program of China (2021YFD190100202). SW was supported by the China Scholarship Council (No. 202103250053). We acknowledge the Chinese Academy of Agricultural Sciences—Gembloux Agro-Bio Tech joint PhD program and all the colleagues from the long-term experimental site for their unremitting assistance.
Álvaro-Fuentes, J., Easter, M., Paustian, K., Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155 (2012), 87–94, 10.1016/j.agee.2012.04.001.
Bai, H.Z., Tao, F.L., Xiao, D.P., Liu, F.S., Zhang, H., Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 135 (2016), 539–553, 10.1007/s10584-015-1579-8.
Berhane, M., Xu, M., Liang, Z.Y., Shi, J.L., Wei, G.H., Tian, X.H., Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Glob. Chang. Biol. 26:4 (2020), 2686–2701, 10.1111/gcb.15018.
Bingham, I.J., Wu, L.H., Simulation of wheat growth using the 3D root architecture model SPACSYS: validation and sensitivity analysis. Eur. J. Agron. 34 (2011), 181–189, 10.1016/j.eja.2011.01.003.
Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R., Chhetri, N., A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4 (2014), 287–291 https:// doi.org/10.1038/nclimate2153.
Chen, R.R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X.G., Blagodatskaya, E., Kuzyakov, Y., Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 20 (2014), 2356–2367, 10.1111/gcb.12475.
Chen, Z.D., Chen, F., Zhang, H.L., Liu, S.L., Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China. Environ. Sci. Pollut. Res. Int. 23 (2016), 24781–24795, 10.1007/s11356-016-7455-x.
Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., Woodward, S., Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4 (2011), 1051–1075, 10.5194/gmd-4-1051-2011.
Del Grosso, S.J., Smith, W., Kraus, D., Massad, R.S., Vogeler, I., Fuchs, K., Approaches and concepts of modelling denitrification: increased process understanding using observational data can reduce uncertainties. Curr. Opin. Environ. Sustain. 47 (2020), 37–45, 10.1016/j.cosust.2020.07.003.
Fang, Q.X., Yu, Q., Wang, E.L., Chen, Y.H., Zhang, G.L., Wang, J., Li, L.H., Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain. Plant Soil 284 (2006), 335–350, 10.1007/s11104-006-0055-7.
FAO, 2018. Food and agriculture organization of the United Nations. FAOSTAT. Online Database Retrieved from (http://faostat.fao.org/).
Gao, B., Huang, T., Ju, X.T., Gu, B.J., Huang, W., Xu, L.L., Rees, R.M., Powlson, D.S., Smith, P., Cui, S.H., Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Chang. Biol. 24 (2018), 5590–5606, 10.1111/gcb.14425.
Grant, R.F., Arkebauer, T.J., Dobermann, A., Hubbard, K.G., Schimelfenig, T.T., Suyker, A.E., Verma, S.B., Walters, D.T., Net biome productivity of irrigated and rainfed maize-soybean rotations: modeling vs. measurements. Agron. J. 99 (2007), 1404–1423, 10.2134/agronj2006.0308.
Griffis, T.J., Chen, Z.C., Baker, J.M., Wood, J.D., Millet, D.B., Lee, X.H., Venterea, R.T., Turner, P.A., Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl. Acad. Sci. USA. 114 (2017), 12081–12085, 10.1073/pnas.1704552114.
Gu, J.X., Yuan, M.X., Liu, J.X., Hao, Y.X., Zhou, Y.T., Qu, D., Yang, X.Y., Trade-Off between soil organic carbon sequestration and nitrous oxide emissions from winter wheat-summer maize rotations: implications of a 25-year fertilization experiment in Northwestern China. Sci. Total Environ. 595 (2017), 371–379, 10.1016/j.scitotenv.2017.03.280.
Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J.P., Cardinael, R., Chen, S.C., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., Pellerin, S., Powlson, D.S., Rasse, D.P., Rees, F., Soussana, J.F., Su, Y., Tian, H.Q., Valin, H., Zhou, F., Can N2O emissions offset the benefits from soil organic carbon storage?. Glob. Chang. Biol., 2020, 1–20, 10.1111/gcb.15342.
Han, X., Xu, C., Dungait, J., Bol, R., Wang, X.J., Wu, W.L., Meng, F.Q., Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences 15 (2018), 1933–1946, 10.5194/bg-15-1933-2018.
Hiel, M.P., Barbieux, S., Pierreux, J., Olivier, C., Lobet, G., Roisin, C., Garre, S., Colinet, G., Bodson, B., Dumont, B., Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ, 6, 2018, e4836, 10.7717/peerj.4836.
Ho, A., Ijaz, U.Z., Janssens, T.K.S., Ruijs, R., Kim, S.Y., de Boer, W., Termorshuizen, A., van der Putten, W.H., Bodelier, P.L.E., Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. GCB Bioenergy 9 (2017), 1707–1720, 10.1111/gcbb.12457.
Hu, X.K., Su, F., Ju, X.T., Gao, B., Oenema, O., Christie, P., Huang, B.X., Jiang, R.F., Zhang, F.S., Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 176 (2013), 198–207, 10.1016/j.envpol.2013.01.040.
IPCC, 2014. Climate change 2014. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK and New York, NY.
Johnsson, H., Jansson, P.E., Water balance and soil moisture dynamics of field plots with barley and grass ley. J. Hydrol. 129 (1991), 149–173, 10.1016/0022-1694(91)90049-N.
Ju, X.T., Liu, X.J., Zhang, F.S., Roelcke, M., Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio 33 (2004), 300–305, 10.1579/0044-7447-33.6.300.
Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S., Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA. 106 (2009), 8077–8078, 10.1073/pnas.0902655106.
Kong, X.B., Zhang, X.L., Lal, R., Zhang, F.R., Chen, X.H., Niu, Z.G., Han, L., Song, W., Groundwater depletion by agricultural intensification in China's HHH plains, since 1980s. Advan. Agron. 135 (2016), 59–106, 10.1016/bs.agron.2015.09.003.
Li, J., Wang, M.X., Chen, D.Z., Time selection for non-continuous measurements of methane emission from rice paddy fields. J. Grad. Sch. Acad. Sin. 15 (1998), 24–29.
Li, L.F., Zheng, Z.Z., Wang, W.J., Biederman, J.A., Xu, X.L., Ran, Q.W., Qian, R.Y., Xu, C., Zhang, B., Wang, F., Zhou, S.T., Cui, L.Z., Che, R.X., Hao, Y.B., Cui, X.Y., Xu, Z.H., Wang, Y.F., Terrestrial N2O emissions and related functional genes under climate change: a global meta-analysis. Glob. Chang. Biol. 00 (2019), 1–13, 10.1111/gcb.14847.
Liang, S., Li, Y.F., Zhang, X.B., Sun, Z.G., Sun, N., Duan, Y.H., Xu, M.G., Wu, L.H., Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in northern China. Agr. For. Meteorol. 262 (2018), 310–321, 10.1016/j.agrformet.2018.07.019.
Lin, Z.B., Zhang, R.D., Effects of climate change and elevated atmospheric CO2 on soil organic carbon: a response equation. Clim. Change 113 (2012), 107–120, 10.1007/s10584-011-0355-7.
Liu, C., Lu, M., Cui, J., Li, B., Fang, C.M., Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob. Change Biol. 20 (2014), 1366–1381, 10.1111/gcb.12517.
Liu, C., Wang, L., Cocq, K.L., Chang, C.L., Li, Z.G., Chen, F., Liu, Y., Wu, L.H., Climate change and environmental impacts on and adaptation strategies for production in wheat-rice rotations in southern China. Agr. For. Meteorol., 292-293, 2020, 108136, 10.1016/j.agrformet.2020.108136.
Liu, C., Shan, Y., Wang, Q.M., Harris, P., Liu, Y., Wu, L.H., Impacts of measured soil hydraulic conductivity on the space–time simulations of water and nitrogen cycling. Catena, 226, 2023, 107058, 10.1016/j.catena.2023.107058.
Liu, C.Y., Wang, K., Zheng, X.H., Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 9 (2012), 839–850, 10.5194/bg-9-839-2012.
Liu, L., Yao, S., Zhang, H.T., Muhammed, A., Xu, J.X., Li, R.N., Zhang, D.J., Zhang, S.L., Yang, X.Y., Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China. Agric. Water Manag. 213 (2019), 445–453, 10.1016/j.agwat.2018.11.001.
Liu, L.L., Greaver, T.L., A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12 (2009), 1103–1117, 10.1111/j.1461-0248.2009.01351.x.
Liu, X.J., Vitousek, P., Chang, Y.H., Zhang, W.F., Matson, P., Zhang, F.S., Evidence for a historic change occurring in China. Environ. Sci. Technol. 50 (2016), 505–506, 10.1021/acs.est.5b05972.
Lu, C.Q., Tian, H.Q., Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Glob. Chang. Biol. 19 (2013), 571–588, 10.1111/gcb.12049.
Lu, F., Wang, X.K., Han, B., Ouyang, Z.Y., Zheng, H., Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures. Ann. N. Y. Acad. Sci. 1195:Suppl 1 (2010), E107–E130, 10.1111/j.1749-6632.2009.05408.x.
Luo, Q.Y., Bellotti, W., Williams, M., Bryan, B., Potential impact of climate change on wheat yield in South Australia. Agr. For. Meteorol. 132 (2005), 273–285, 10.1016/j.agrformet.2005.08.003.
Luo, Y.C., Zhang, Z., Li, Z.Y., Chen, Y., Zhang, L.L., Cao, J., Tao, F.L., Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett., 15(7), 2020, 074003, 10.1088/1748-9326/ab80f0.
Luo, Z.K., Wang, E.L., Xing, H.T., Smith, C., Wang, G.C., Cresswell, H., Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems. Agr. For. Meteorol. 232 (2017), 400–410, 10.1016/j.agrformet.2016.09.008.
Lyu, H., Watanabe, T., Zhong, R.H., Kilasara, M., Hartono, A., Funakawa, S., Factors controlling sizes and stabilities of subsoil organic carbon pools in tropical volcanic soils. Sci. Total Environ., 769, 2021, 144842, 10.1016/j.scitotenv.2020.144842.
Marushchak, M.E., Pitkämäki, A., Koponen, H., Biasi, C., Seppälä, M., Martikainen, P.J., Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob. Chang. Biol. 17 (2011), 2601–2614, 10.1111/j.1365-2486.2011.02442.x.
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50 (2007), 885–900, 10.13031/2013.23153.
Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Lin, E.D., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J.F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., Nakicenovic, N., O'Neill, B., Pichs, R., Riahi, K., Rose, S., Runci, P., Stouffer, R., van Vuuren, D., Weyant, J., Wilbanks, T., van Ypersele, J.P., Zurek, M., 2008. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Geneva: Intergovernmental Panel on Climate Change. pp. 132.
NBSC (National Bureau of Statistics of China), 2015. China Statistical Yearbook. China Statistics Press, Beijing.
Nol, L., Heuvelink, G.B.M., Veldkamp, A., de Vries, W., Kros, J., Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale. Geoderma 159 (2010), 9–23, 10.1016/j.geoderma.2010.06.009.
Porter, J.R., Gawith, M., Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10 (1999), 23–36, 10.1016/S1161-0301(98)00047-1.
Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J., Gurevitch, J., Gcte, N., A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 (2001), 543–562, 10.1007/s004420000544.
Sanchez, B., Rasmussen, A., Porter, J.R., Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20 (2014), 408–417, 10.1111/gcb.12389.
Schroder, J.L., Zhang, H.L., Girma, K., Raun, W.R., Penn, C.J., Payton, M.E., Soil acidification from Long-term use of nitrogen fertilizers on winter wheat. Soil Sci. Soc. Am. J., 75, 2011, 10.2136/sssaj2010.0187.
Shan, Y., Huang, M.B., Harris, P., Wu, L.H., A sensitivity analysis of the SPACSYS model. Agriculture, 11, 2021, 624, 10.3390/agriculture11070624.
Shang, Z.Y., Abdalla, M., Xia, L.L., Zhou, F., Sun, W.J., Smith, P., Can cropland management practices lower net greenhouse emissions without compromising yield?. Glob. Chang. Biol. 00 (2021), 1–14, 10.1111/GCB.15796.
Shen, W., Reynolds, J.F., Hui, D., Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob. Chang. Biol. 15 (2009), 2274–2294, 10.1111/j.1365-2486.2009.01857.x.
Shepherd, A., Wu, L., Chadwick, D., Bol, R., A review of quantitative tools for assessing the diffuse pollution response to farmer adaptations and mitigation methods under climate change. Adv. Agron. 112 (2011), 1–54, 10.1016/b978-0-12-385538-1.00001-9.
Smith, P., Smith, J.U., Powlson, D.S., Mcgill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81 (1997), 153–225, 10.1016/S0016-7061(97)00087-6.
Snyder, J.D., Trofymow, J.A., A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun. Soil Sci. Plant Anal. 15 (1984), 587–597, 10.1080/00103628409367499.
Tilman, D., Balzer, C., Hill, J., Befort, B.L., Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 108 (2011), 20260–20264, 10.1073/pnas.1116437108.
Trumbore, S.E., Chadwick, O.A., Amundson, R., Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272 (1996), 393–396, 10.1126/science.272.5260.393.
Turkeltaub, T., Gongadze, K., Lü, Y.H., Huang, M.B., Jia, X.X., Yang, H.Y., Shao, M.A., Binley, A., Harris, P., Wu, L.H., A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the loess plateau, China. Ecol. Modell., 474, 2022, 110173, 10.1016/j.ecolmodel.2022.110173.
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., The representative concentration pathways: an overview. Clim. Change 109 (2011), 5–31, 10.1007/s10584-011-0148-z.
Wan, Y.F., Lin, E.D., Xiong, W., Li, Y.E., Guo, L.P., Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 141 (2011), 23–31, 10.1016/j.agee.2011.02.004.
Wang, G.C., Luo, Z.K., Wang, E.L., Zhang, W., Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-huai-hai plain, China. Agr. For. Meteorol. 260-261 (2018), 80–94, 10.1016/j.agrformet.2018.06.003.
Wang, J.Z., Wang, X.J., Xu, M.G., Feng, G., Zhang, W.J., Yang, X.Y., Huang, S.M., Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China. Sci. Rep., 5, 2015, 11409, 10.1038/srep11409.
Wang, J.Z., Wang, X.J., Xu, M.G., Feng, G., Zhang, W.J., Lu, C.A., Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 102 (2015), 371–381, 10.1007/s10705-015-9710-9.
Wang, Y.Y., Hu, C.S., Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the piedmont plain of mount Taihang, China. 2011 Chin. J. Eco-Agric. 19:5 (2011), 1122–1128, 10.3724/SP.J.1011.2011.01122.
Wang, Y.Y., Hu, C.S., Dong, W.X., Li, X.X., Zhang, Y.M., Qin, S.P., Oenema, O., Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China plain. Agric. Ecosyst. Environ. 206 (2015), 33–45, 10.1016/j.agee.2015.03.016.
Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W., Amann, M., Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett., 13, 2018, 014011, 10.1088/1748-9326/aa9ec9.
Wu, L., Shepherd, A., Special features of the SPACSYS modeling package and procedures for parameterization and validation. Ahuja, L.R., Ma, L.W., (eds.) Methods of Introducing System Models into Agricultural Research, 2011, American Society of Agronomy, Inc., New York, 117–154, 10.2134/advagricsystmodel2.c4.
Wu, L., McGechan, M.B., McRoberts, N., Baddeley, J.A., Watson, C.A., SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling - model description. Ecol. Model. 200 (2007), 343–359, 10.1016/j.ecolmodel.2006.08.010.
Wu, L., Bingham, I.J., Baddeley, J.A., Watson, C.A., Modeling Plant Nitrogen Uptake Using Three-dimensional and One-dimensional Root Architecture. Ma, L., Ahuja, L.R., Bruulsema, T.W., (eds.) Quantifying and Understanding Plant Nitrogen Uptake Systems Modeling, 2009, CRC Press, Boca Raton, FL, 197–218.
Wu, L., Rees, R.M., Tarsitano, D., Zhang, X.B., Jones, S.K., Whitmore, A.P., Simulation of nitrous oxide emissions at field scale using the SPACSYS model. Sci. Total Environ. 530-531 (2015), 76–86, 10.1016/j.scitotenv.2015.05.064.
Wu, L., Zhang, X.B., Griffith, B.A., Misselbrook, T.H., Sustainable grassland systems: a modelling perspective based on the North Wyke farm platform. Eur. J. Soil Sci. 67:4 (2016), 397–408, 10.1111/ejss.12304.
Xiao, D.P., Tao, F.L., Liu, Y.J., Shi, W.J., Wang, M., Liu, F.S., Zhang, S., Zhu, Z., Observed changes in winter wheat phenology in the North China plain for 1981-2009. Int. J. Biometeorol. 57 (2013), 275–285, 10.1007/s00484-012-0552-8.
Xiong, W., Conway, D., Lin, E.D., Xu, Y.L., Ju, H., Jiang, J.H., Holman, I., Li, Y., Future cereal production in China: the interaction of climate change, water availability and socio-economic scenarios. Glob. Environ. Chang 19 (2009), 34–44, 10.1088/1755-1307/6/7/372004.
Xu, C., Han, X., Bol, R., Smith, P., Wu, W.L., Meng, F.Q., Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: a meta-analysis. Ecol. Evol. 7 (2017), 6702–6715, 10.1002/ece3.3211.
Yao, Z.S., Yan, G.X., Zheng, X.H., Wang, R., Liu, C.Y., Butterbach-Bahl, K., Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Sci. Total Environ. 590-591 (2017), 174–185, 10.1016/j.scitotenv.2017.02.194.
Zhang, X.B., Xu, M.G., Sun, N., Xiong, W., Huang, S.M., Wu, L.H., Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 265 (2016), 176–186, 10.1016/j.geoderma.2015.11.027.
Zhang, X.B., Xu, M.G., Liu, J., Sun, N., Wang, B.R., Wu, L.H., Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: a model approach. J. Environ. Manag. 167 (2016), 105–114, 10.1016/j.jenvman.2015.11.014.
Zhang, X.Y., Wang, S.F., Sun, H.Y., Chen, S.Y., Shao, L.W., Liu, X.W., Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: a case study in the North China Plain. Eur. J. Agron. 50 (2013), 52–59, 10.1016/j.eja.2013.05.005.
Zhu, C.C., Zhong, W.H., Han, C., Deng, H., Jiang, Yb, Driving factors of soil organic carbon sequestration under straw returning across China's uplands. J. Environ. Manag., 335, 2023, 117590, 10.1016/j.jenvman.2023.117590.