Article (Scientific journals)
Fast sky localization of gravitational waves using deep learning seeded importance sampling
Kolmus, Alex; Baltus, Grégory; Janquart, Justin et al.
2022In Physical Review. D, 106 (2)
Peer Reviewed verified by ORBi
 

Files


Full Text
PhysRevD.106.023032.pdf
Publisher postprint (2.35 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Nuclear and High Energy Physics; General Relativity and Quantum Cosmology; astro-ph.IM; Computer Science - Learning
Abstract :
[en] Fast, highly accurate, and reliable inference of the sky origin of gravitational waves would enable real-time multimessenger astronomy. Current Bayesian inference methodologies, although highly accurate and reliable, are slow. Deep learning models have shown themselves to be accurate and extremely fast for inference tasks on gravitational waves, but their output is inherently questionable due to the blackbox nature of neural networks. In this work, we merge Bayesian inference and deep learning by applying importance sampling on an approximate posterior generated by a multiheaded convolutional neural network. The neural network parametrizes Von Mises-Fisher and Gaussian distributions for the sky coordinates and two masses for given simulated gravitational wave injections in the LIGO and Virgo detectors. We generate skymaps for unseen gravitational-wave events that highly resemble predictions generated using Bayesian inference in a few minutes. Furthermore, we can detect poor predictions from the neural network, and quickly flag them.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Kolmus, Alex;  Institute for Computing and Information Sciences (ICIS), Radboud University Nijmegen, Nijmegen, Netherlands
Baltus, Grégory  ;  Université de Liège - ULiège > Faculté des Sciences > CAPAES sciences
Janquart, Justin;  Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Van Laarhoven, Twan ;  Institute for Computing and Information Sciences (ICIS), Radboud University Nijmegen, Nijmegen, Netherlands
Caudill, Sarah;  Nikhef, Amsterdam, Netherlands ; Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, Netherlands
Heskes, Tom ;  Institute for Computing and Information Sciences (ICIS), Radboud University Nijmegen, Nijmegen, Netherlands
Language :
English
Title :
Fast sky localization of gravitational waves using deep learning seeded importance sampling
Publication date :
2022
Journal title :
Physical Review. D
ISSN :
2470-0010
eISSN :
2470-0029
Publisher :
American Physical Society
Volume :
106
Issue :
2
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work was (partially) funded by the NWO under the CORTEX project (NWA.1160.18.316). G. B. is supported by aFRIA grant from the Fonds de la Recherche Scientifique-FNRS, Belgium. J. J. is supported by the research program of the Netherlands Organisation for Scientific Research (NWO).
Commentary :
12 pages, 9 figures, 1 table
Available on ORBi :
since 01 June 2024

Statistics


Number of views
4 (1 by ULiège)
Number of downloads
1 (0 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
6
OpenCitations
 
4
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi