[en] Lepidoptera can cause several health issues in humans and domestic animals due to their setae, which are defensive adaptations that protect them from predators. The diversity of venomous Lepidoptera has been explored in several reviews starting from the first comprehensive attempt in 1984 by Kawamoto and Kumada (KK) who compiled a list of 228 species based on previous reviews; however, KK did not cite the original publications for listed species. In this review we validated and updated the KK table. The updated list of venomous Lepidoptera includes 5 superfamilies, 14 families, 208 genera, and 576 species, representing a two-fold increase for genera and 2.9-fold for species with respect to KK. The total number of species in the genera including at least one venomous species, which we argue is likely closer to the true number of venomous species, is 7 times higher (3,620). GBIF (Global Biodiversity Information Facility) occurrences for venomous species are 1–4 orders of magnitude higher than those of confamilial non-venomous species. The presence of venomous structures is independent of the relatedness of the clades or geographic region; venom is produced by many species of Zygaenoidea, Lasiocampoidea and Bombycoidea but only by some specialized groups in Papilionoidea and Noctuoidea. There are likely to be multiple evolutionary origins of venom within Lepidoptera, but the exact number is difficult to estimate. The knowledge gap between medical and natural history fields needs to be addressed with novel approaches to study ecology and toxicology. This review offers health practitioners a tool to better understand the origin of the reactions observed and to improve the identification of the causal agents.
Disciplines :
Entomology & pest control
Author, co-author :
Battisti, Andrea; Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Italy
Walker, Andrew A.; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
Uemura, Mizuki; School of the Environment, The University of Queensland, Brisbane, Australia
Zalucki, Myron P.; School of the Environment, The University of Queensland, Brisbane, Australia
Brinquin, Anne-Sophie; Entomology and Mediterranean Forest Experimental Unit (UEFM), INRAE, Avignon, France
Caparros Megido, Rudy ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Gachet, Emmanuel; Plant Health Laboratory, Biological risk assessment Unit, ANSES, France
Desneux, Nicolas; Université Côte d’Azur, INRAE, UMR ISA, Nice, France
Language :
English
Title :
Look but do not touch: the occurrence of venomous species across Lepidoptera
Publication date :
2024
Journal title :
Entomologia Generalis
ISSN :
0171-8177
eISSN :
2363-7102
Publisher :
Schweizerbart Science Publishers
Volume :
44
Issue :
1
Pages :
29 - 39
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
Davide Nardi for data extraction from GBIF. National History Museum Paris, Paolo Paolucci for drawing Fig. 2. The analysis presented in this document has been generated in part during expertise work carried out on behalf of the French Agency for Food, Environmental and Occupational Health & Safety (ANSES). We acknowledge support from the Australian Research Council through Discovery Project DP200102867. This paper is dedicated to Prof. Luigi Masutti on the occasion of his 90th birthday.Acknowledgements: Davide Nardi for data extraction from GBIF. National History Museum Paris, Paolo Paolucci for drawing Fig. 2. The analysis presented in this document has been generated in part during expertise work carried out on behalf of the French Agency for Food, Environmental and Occupational Health & Safety (ANSES). We acknowledge support from the Australian Research Council through Discovery Project DP200102867. This paper is dedicated to Prof. Luigi Masutti on the occasion of his 90th birthday.
Alexander, J. O. (1984). Arthropods and human skin. Berlin: Springer. https://doi.org/10.1007/978-1-4471-1356-0
Balit, C. R., Geary, M. J., Russell, R. C., & Isbister, G. K. (2004). Clinical effects of exposure to the White-stemmed gum moth (Chelepteryx collesi). Emergency Medicine (Fremantle, W.A.), 16(1), 74–81. https://doi.org/10.1111/j.1742-6723.2004.00530.x
Balit, C. R., Ptolemy, H. C., Geary, M. J., Russell, R. C., & Isbister, G. K. (2001). Outbreak of caterpillar dermatitis caused by airborne hairs of the mistletoe browntail moth (Euproctis edwardsi). The Medical Journal of Australia, 175(11-12), 641– 643. https://doi.org/10.5694/j.1326-5377.2001.tb143760.x
Barbaro, L., & Battisti, A. (2011). Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 56(2), 107–114. https://doi.org/10.1016/j. biocontrol.2010.10.009
Battisti, A., Holm, G., Fagrell, B., & Larsson, S. (2011). Urticating hairs in arthropods – their nature and medical significance. Annual Review of Entomology, 56(1), 203–220. https://doi. org/10.1146/annurev-ento-120709-144844
Battisti, A., Larsson, S., & Roques, A. (2017). Processionary moths and associated urtication risk: Global-change driven effects. Annual Review of Entomology, 62(1), 323–342. https://doi. org/10.1146/annurev-ento-031616-034918
Buckner, C. H. (1966). The role of vertebrate predators in the biological control of forest insects. Annual Review of Entomology, 11(1), 449–470. https://doi.org/10.1146/annurev. en.11.010166.002313
Burns, J. H., & Strauss, S. Y. (2011). More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5302–5307. https://doi.org/10.1073/pnas.1013003108
Cawdell-Smith, A. J., Todhunter, K. H., Anderson, S. T., Perkins, N. R., & Bryden, W. L. (2012). Equine amnion-itis and fetal loss: Mare abortion following experimental exposure to processionary caterpillars (Ochrogaster luni-fer). Equine Veterinary Journal, 44(3), 282–288. https://doi. org/10.1111/j.2042-3306.2011.00424.x
Collins, C. T., & Watson, A. (1983). Field observations of bird pre-dation on Neotropical moths. Biotropica, 15(1), 53–60. https://doi.org/10.2307/2387999
Cooley, T. J., Reardon, R. C. (2022). Field guide to the slug moths (Lepidoptera: Limacodidae) of West Virginia. U.S. Department of Agriculture, Forest health assessment and applied sciences, Team FHAAST-2019-06.
Delgado Quiroz, A. (1978). Venoms of Lepidoptera. In S. Bettini (Ed.), Handbook of experimental pharmacology: Vol. 48. Arthropod venoms (pp. 555–611). Berlin: Springer. https://doi. org/10.1007/978-3-642-45501-8_20
Derraik, J. (2006). Erucism in New Zealand: Exposure to gum leaf skeletoniser (Uraba lugens) caterpillars in the differential diagnosis of contact dermatitis in the Auckland region. The New Zealand Medical Journal, 119, 1–6. Retrieved from http://www. nzma.org.nz/journal/119-1241/xxxx/
Diaz, J. H. (2005). The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar enven-oming. The American Journal of Tropical Medicine and Hygiene, 72(3), 347–357. https://doi.org/10.4269/ajtmh.2005.72.347
Epstein, M. E. (1995). False-parasitized cocoons and the biology of Aididae (Lepidoptera: Zygaenoidea). Proceedings of the Entomological Society of Washington, 97, 750–756.
Epstein, M. E. (1996). Revision and phylogeny of the Limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithsonian Contributions to Zoology, 582(582), 1–102. https://doi.org/10.5479/si.00810282. 582
Faucheux, M. J. (2000). La chenille-limace du papillon du mimosa, Latoia thamia Rungs (Lepidoptera: Limacodidae): particulari-tés écologiques et appareil urticant. Bulletin de la Societé des Sciences Naturelles de l’Ouest de la France, 22, 171–185.
Faucheux, M. J. (2012). The urticating apparatus in the larva of the Lappet Moth, Streblote panda Hübner, 1820 (Lepidoptera: Lasiocampidae). Bonn Zoological Bulletin, 61, 129–134.
Froggatt, W. W. (1911). Bag-shelter caterpillars of the fam-ily Lyparidae that are reported to kill stock. The Agricultural Gazette of New South Wales, 22, 443–447.
Fry, B. G., Roelants, K., Champagne, D. E., Scheib, H., Tyndall, J. D., King, G. F., … de la Vega, R. C. R. (2009). The toxi-cogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annual Review of Genomics and Human Genetics, 10(1), 483–511. https://doi.org/10.1146/annurev. genom.9.081307.164356
Galicia-Curiel, M. F., Quintanar, J. L., Jiménez, M., & Salinas, E. (2014). Mast cells respond to urticating extract from lepidoptera larva Morpheis ehrenbergii in the rat. Toxicon, 77, 121–124. https://doi.org/10.1016/j.toxicon.2013.11.008
Garcia-Rosello, E., Gonzalez-Dacosta, J., Guisande, C., & Lobo, J. M. (2023). GBIF falls short of providing a representative pic-ture of the global distribution of insects. Systematic Entomology, 48(4), 489–497. https://doi.org/10.1111/syen.12589
GBIF Secretariat (2023). GBIF Occurrence Download 18 August 2023. https://doi.org/10.15468/dl.tgww7j
Gilmer, P. M. (1925). A comparative study of the poison apparatus of certain lepidopterous larvae. Annals of the Entomological Society of America, 18(2), 203–239. https://doi.org/10.1093/aesa/18.2.203
González, C., Ballesteros-Mejia, L., Diaz-Diaz, J., Toro-Vargas, D. M., Amarillo-Suarez, A. R., Gey, D., … Rougerie, R. (2023). Deadly and venomous Lonomia caterpillars are more than the two usual suspects. PLoS Neglected Tropical Diseases, 17(2), e0011063. https://doi.org/10.1371/journal.pntd.0011063
Hossler, E. W. (2009). Caterpillars and moths. Dermatologic Therapy, 22(4), 353–366. https://doi.org/10.1111/j.1529-8019. 2009.01247.x
Hossler, E. W. (2010a). Caterpillars and moths. Part I. Dermatologic manifestations of encounters with Lepidoptera. Journal of the American Academy of Dermatology, 62(1), 1–10. https://doi. org/10.1016/j.jaad.2009.08.060
Hossler, E. W. (2010b). Caterpillars and moths. Part II. Dermatologic manifestations of encounters with Lepidoptera. Journal of the American Academy of Dermatology, 62(1), 13–28. https://doi. org/10.1016/j.jaad.2009.08.061
Hunter, A. F. (1991). Traits that distinguish outbreaking and non-outbreaking macrolepidoptera feeding on northern hardwood trees. Oikos, 60(3), 275–282. https://doi.org/10.2307/3545068
Kageyama, A., & Sugiura, S. (2016). Caterpillar hairs as an anti-parasitoid defence. Naturwissenschaften, 103(9-10), 86. https://doi.org/10.1007/s00114-016-1411-y
Kawahara, A. Y., Plotkin, D., Espeland, M., Meusemann, K., Toussaint, E. F. A., Donath, A., … Breinholt, J. W. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 22657– 22663. https://doi.org/10.1073/pnas.1907847116
Kawamoto, F., Suto, C., & Kumada, N. (1978). Studies on venomous spicules and spines of moth caterpillars. 1. Fine-structure and development of venomous spicules of Euproctis caterpil-lars. Japanese Journal of Medical Science & Biology, 31(3), 291–299. https://doi.org/10.7883/yoken1952.31.291
Kawamoto, F., Kumada, N. (1984). Biology and venoms of Lepidoptera. In A. T. Tu (Ed.) Handbook of natural toxins. Vol. 2. Insect poisons, allergens, and other invertebrate venoms (pp. 291–330). Dekker, New York.
Koricheva, J., Klapwijk, M. J., & Björkman, C. (2012). Life history traits and host plant use in defoliators and bark beetles: implications for population dynamics. In P. Barbosa, D. K. Letourneau, & A. A. Agrawal (Eds.), Insect outbreaks revisited (pp. 175–196). Wiley-Blackwell. https://doi.org/10.1002/9781118295205.ch9
Lambkin, T. A. (2021). Notes on the biology and life history of Taenaris artemis Jamesi Butler, 1877 (Lepidoptera: Nymphalidae: Satyrinae) from Torres Strait, Queensland with discussion of variation in wing pattern characters of reared progeny. Australian Entomologist, 48, 397–405.
Lamdin, J. M., Howell, D. E., Kocan, K. M., Murphey, D. R., Arnold, D. C., Fenton, A. W., … Ownby, C. L. (2000). The venomous hair structure, venom and life cycle of Lagoa crispata, a puss caterpillar of Oklahoma. Toxicon, 38(9), 1163–1189. https://doi.org/10.1016/S0041-0101(99)00195-6
Lin, Y. C., Lin, R. J., Braby, M. F., & Hsu, Y. F. (2019). Evolution and losses of spines in slug caterpillars (Lepidoptera: Limacodidae). Ecology and Evolution, 9(17), 9827–9840. https://doi.org/10.1002/ece3.5524
Marianelli, L., Iovinella, I., Strangi, A., Madonni, L., Efetov, K. A., Tarmann, G. M., … Roversi, P. F. (2020). First record of the pest Artona (Fuscartona) martini Efetov, 1997 (Lepidoptera Zygaenidae Procridinae Artonini) in European territory. Redia (Firenze), 103, 3–7. https://doi.org/10.19263/REDIA-103.20.01
Maschwitz, U. W. J., & Kloft, W. (1971). Morphology and function of the venom apparatus of insects-bees, wasps, ants and caterpillars. In W. Bücherl & E. E. Buckley (Eds.), Venomous animals and their venoms, Venomous invertebrates (pp. 1–60). New York: Academic. https://doi.org/10.1016/B978-0-12-138903-1.50008-9
Matthioli, P. A. (1562). Medici Senensis Commentarii. In Libros sex Pedacii Dioscoridis Anazarbei, de Materia Medica, Adjectis qua’m plurimis plantarum & animalium imaginibus, eodem authore. Venezia: Valgrisi.
Mayer, C., Dietz, L., Call, E., Kukowka, S., Martin, S., & Espeland, M. (2021). Adding leaves to the Lepidoptera tree: Capturing hundreds of nuclear genes from old museum speci-mens. Systematic Entomology, 46(3), 649–671. https://doi.org/10.1111/syen.12481
Menken, S. B. J., Boomsma, J. J., & van Nieukerken, E. J. (2010). Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution; International Journal of Organic Evolution, 64(4), 1098–1119. https://doi. org/10.1111/j.1558-5646.2009.00889.x
Mullen, G. R., & Zaspel, J. M. (2019). Moths and butterflies (Lepidoptera). In G. R. Mullen & L. A. Durden (Eds.), Medical and veterinary entomology (pp. 439–458). Academic Press; https://doi.org/10.1016/B978-0-12-814043-7.00021-2
Murphy, S. M., Leahy, S. M., Williams, L. S., & Lill, J. T. (2010). Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. Behavioral Ecology, 21(1), 153– 160. https://doi.org/10.1093/beheco/arp166
Perkins, L. E., Zalucki, M. P., Perkins, N. R., Cawdell-Smith, A. J., Todhunter, K. H., Bryden, W. L., & Cribb, B. W. (2016). The urticating setae of Ochrogaster lunifer, an Australian pro-cessionary caterpillar of veterinary importance. Medical and Veterinary Entomology, 30(2), 241–245. https://doi.org/10.1111/mve.12156
Pesce, H., & Delgado, A. (1971). Poisoning from adult moths and caterpillars. In W. Bücherl, & E. E. Buckley (Eds.) Venomous animals and their venoms. Vol III Venomous invertebrates (pp. 119–156). Academic Press, New York. https://doi. org/10.1016/B978-0-12-138903-1.50012-0
Picarelli, Z. P., & Valle, J. R. (1971) Pharmacological studies in caterpillar venoms. In W. Bücherl, & E. Buckley (Eds.) Venomous animals and their venoms. Vol III Venomous invertebrates (pp. 103–118). Academic Press, New York. https://doi. org/10.1016/B978-0-12-138903-1.50011-9
Poinar, G., & Vega, F. E. (2019). Poisonous setae on a Baltic amber caterpillar. Arthropod Structure & Development, 51, 37–40. https://doi.org/10.1016/j.asd.2019.100879
Pomeroy, W. J. (1921). The irritating hairs of the wild silk moths of Nigeria. Bulletin of the Imperial Institute, 19, 311–319.
Quintana, M., Sciani, J. M., Auada, A. V. V., Martínez, M. M., Sánchez, M. N., Santoro, M. L., … Peichoto, M. E. (2017). Stinging caterpillars from the genera Podalia, Leucanella and Lonomia in Misiones, Argentina: A preliminary comparative approach to understand their toxicity. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 202(Part C), 55–62. https://doi.org/10.1016/j.cbpc.2017.07.007
Réaumur de, R.-A. F. (1736). Mémoires pour servir à l’histoire des insectes. Tome 2. Suite de l’histoire des chenilles et des papil-lons; et l’histoire des insectes ennemis des chenilles. Imprimerie Royale, Paris France.
Robinson, G. S., Ackery, P. R.; Kitching, I., Beccaloni, G. W., & Hernández, L. M. (2023). HOSTS – a Database of the World’s Lepidopteran Hostplants [Data set]. Natural History Museum. https://doi.org/10.5519/havt50xw
Roques, A., & Battisti, A. (2015). Introduction. In A. Roques (Ed.), Processionary moths and climate change: an update (pp. 1–13). Dordrecht, Versailles: Springer-Quae; https://doi. org/10.1007/978-94-017-9340-7_1
Rotberg, A. (1971). Lepidopterism in Brazil. In W. Bücherl, & E. E. Buckley (eds) Venomous animals and their venoms. Vol III Venomous invertebrates (pp. 157–168). Academic Press, New York. https://doi.org/10.1016/B978-0-12-138903-1.50013-2
Rothschild, M., Reichstein, T., von Euw, J., Aplin, R., & Harman, R. R. (1970). Toxic Lepidoptera. Toxicon, 8(4), 293–296. https://doi.org/10.1016/0041-0101(70)90006-1
Seldeslachts, A., Peigneur, S., & Tytgat, J. (2020). Caterpillar venom: A health hazard of the 21st century. Biomedicines, 8(6), 143. https://doi.org/10.3390/biomedicines8060143
Southcott, R. V. (1978). Lepidopterism in the Australian Region. Records of the Adelaide Children’s Hospital, 2, 87–173.
Southcott, R. V. (1987). Moths and butterflies. In J. Covacevich, P. Davie, & J. Pearn (Eds.), Toxic plants & animals. A guide for Australia (pp. 243–257). Brisbane: Queensland Museum.
Specht, A., Corseuil, E., Formentini, A. C., & Prestes, A. S. (2004). Lepidópteros de importância médica ocorrentes no Rio Grande do Sul – I. Megalopygidae. Biociências, Porto Alegre, 12, 173–179.
Specht, A., Corseuil, E., & Formentini, A. C. (2005a). Lepidópteros de importância médica ocorrentes no Rio Grande do Sul. II. Aididae e Limacodidae. Biociências, Porto Alegre, 13, 89–94.
Specht, A., Corseuil, E., & Formentini, A. C. (2005b). Lepidópteros de importância médica ocorrentes no Rio Grande do Sul. III. Saturniidae – Hemileucinae. Biociências, Porto Alegre, 13, 149–162.
Specht, A., Corseuil, E., & Formentini, A. C. (2006). Lepidópteros de importância médica ocorrentes no Rio Grande do Sul. IV. Lasiocampidae. Biociências, Porto Alegre, 14, 53–60.
Stargardt, K. (1903). Pseudotuberculose und gutartige Tuberculose des Auges, mit besonderer Berücksichtigung der binocularmik-roskopischen Untersuchungsmethode. von Graefe’s Archiv für Ophthalmologie, 55, 469–506.
Sugiura, S., & Yamazaki, K. (2014). Caterpillar hair as a physical barrier against invertebrate predators. Behavioral Ecology, 25(4), 975–983. https://doi.org/10.1093/beheco/aru080
Sutantoyo, C. J., & Dayrit, J. F. (2015). Cutaneous lepidopterism from the caterpillar Apona sp. Dermatology Clinics & Research, 1, 63–65.
Tarmann, G. M. (2005). Zygaenid moths of Australia: a revision of the Australian Zygaenidae (Procridinae: Artonini). CSIRO. https://doi.org/10.1071/9780643092198
Todhunter, K. H., Cawdell-Smith, A. J., Bryden, W. L., Perkins, N. R., & Begg, A. P. (2014). Processionary caterpillar setae and equine fetal loss: 1. Histopathology of experimentally exposed pregnant mares. Veterinary Pathology, 51(6), 1117–1130. https://doi.org/10.1177/0300985813516638
Tsutsumi, C. (1959). Structure, development and sting mechanism of the larval poison hair of Artona funeralis Butler (Lepidoptera: Zygaenidae). Japanese Journal of Medical Science & Biology, 12(6), 421–428. https://doi.org/10.7883/yoken1952.12.421
Uemura, M., Perkins, L. E., Zalucki, M. P., & Cribb, B. W. (2017). Predator–prey interaction between greenhead ants and processionary caterpillars is mediated by chemical defence. Animal Behaviour, 129, 213–222. https://doi.org/10.1016/j. anbehav.2017.05.023
van Nieukerken, E. J., Kaila, L., Kitching, I. J., Kristensen, N. P., Lees, D. C., …. (2011). Order Lepidoptera Linnaeus, 1758. In Z.-Q. Zhang (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 212–221., https://doi.org/10.11646/zootaxa.3148.1.41
Vassal, J-M. (1989). Biologie, ecologie et pathologie d’Hylesia metabus (Cramer 1775) (Lépidoptères: Saturniidae), agent de la ‘papillonite’ en Guyane Française: mise en place d’une structure de lutte integree. PhD Thesis, Academie de Montpellier.
Villas Boas, I. M., Bonfá, G., & Tambourgi, D. V. (2018). Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon, 153, 39–52. https://doi.org/10.1016/j.toxicon.2018.08.007
Villa-Ruano, N., Becerra-Martínez, E., Cunill-Flores, J. M., Torres-Castillo, J. A., Horta-Valerdi, G. M., & Pacheco-Hernández, Y. (2023) 1H NMR profiling of the venom from Hylesia continua: implications of small molecules for lepidopterism. Toxins, 15, 101. https://doi.org/10.3390/toxins15020101
Walker, A. A. (2020). The evolutionary dynamics of venom toxins made by insects and other animals. Biochemical Society Transactions, 48(4), 1353–1365. https://doi.org/10.1042/BST 20190820
Walker, A. A., Robinson, S. D., Paluzzi, J.-P. V., Merritt, D. J., Nixon, S. A., Schroeder, C. I., King, G. F. (2021). Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proceedings of the National Academy of Sciences of the United States of America, 118(18), e2023815118. https://doi. org/10.1073/pnas.2023815118
Walker, A. A., Perkins, L. E., Battisti, A., Zalucki, M. P., & King, G. F. (2023a). Proteome of urticating setae of Ochrogaster lunifer, a processionary caterpillar of medical and veterinary importance, including primary structures of putative toxins. Proteomics, 23(20), 2300204. https://doi.org/10.1002/pmic. 202300204
Walker, A. A., Robinson, S. D., Merritt, D. J., Cardoso, F. C., Goudarzi, M. H., Mercedes, R. S., King, G. F. (2023b). Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). Proceedings of the National Academy of Sciences of the United States of America, 120(29), e2305871120. https://doi.org/10.1073/pnas. 2305871120
Weidner, H. (1937). Beitrage zu einer Monographie der Raupen mit Gifthaaren. Zeitschrift für Angewandte Entomologie, 23(3), 432–484. https://doi.org/10.1111/j.1439-0418.1937.tb00446.x