Thermal Conductivity; Crystal field; Rear Earth compounds; Magnetic materials; Transport phenomena
Abstract :
[en] The influence of the crystal-electric-field (CEF) splitting on the thermal conductivity is calculated on the basis of a two-level system model applicable to intermetallic magnetic compounds. The localized spin scattering contribution kappa(s), in a manner similar to the total electronic thermal conductivity kappa(e), shows a larger increase at low and intermediate temperatures as compared to the case iii which-no crystal-electric-field splitting is taken into account. The influence of some theoretical parameters is also discussed. It is shown that the CEF effect enhances the effect of the magnetic scattering potential, and impurity contributions screen such an enhancement at temperatures below the Debye temperature. Other scattering contributions, e.g., electron-phonon and electron impurities, are also taken into account in our calculation. The theory is in quantitative agreement with data on RA1(2) systems taken as test cases, and leads to values of the level splitting in the 50 K range.
Research Center/Unit :
Groupe SUPRAS
Disciplines :
Physics
Author, co-author :
Rassili, Ahmed ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Durczewski, K.
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux - S.U.P.R.A.S.
Language :
English
Title :
Crystal-field effects on the thermal conductivity of localized spin metallic compounds
Publication date :
1998
Journal title :
Physical Review. B, Condensed Matter
ISSN :
0163-1829
eISSN :
1095-3795
Publisher :
American Institute of Physics, New York, United States - New York
I. A. Smirnov and V. S. Oskotski, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneider and L. Eyring (North-Holland, Amsterdam, 1993), Vol. 16, p. 107.
E. Gratz and M. J. Zuckermann, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneider and L. Eyring (North-Holland, Amsterdam, 1982), Vol. 5, p. 117.
F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968).
P. G. Klemens, Thermal Conductivity (Academic, London, 1969).
R. Berman, Thermal Conduction in Solids (Clarendon, Oxford, 1978).
K. Durczewski and M. Ausloos, J. Magn. Magn. Mater. 51, 230 (1985).
A. Rassili and M. Ausloos, J. Magn. Magn. Mater. 147, 341 (1995).
A. Rassili and M. Ausloos, J. Magn. Magn. Mater. 163, 153 (1996).
A. Rassili and M. Ausloos, in Magnetic Hysteresis in Novel Magnetic Materials, Vol. 338 of Series E: Applied Sciences, edited by G. C. Hadjipanayis (Kluwer, Dordrecht, 1997), p. 187.
K. Witanski, Phys. Status Solidi B 131, 129 (1985).
B. Bleaney, Proc. R. Soc. London, Ser. A 276, 39 (1963).
Y. L. Wang and B. Cooper, Phys. Rev. 172, 539 (1968).
P. Fulde and M. Loewenhaupt, Adv. Phys. 34, 589 (1986).
W. Bührer, M. Godet, H. G. Purwins, and E. Walker, Solid State Commun. 13, 881 (1973).
K. Kawasaki, Prog. Theor. Phys. 29, 801 (1963).
R. C. Mjolsness and W. M. Visscher, Phys. Fluids 15, 1854 (1972).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, London, 1976).
T. Kasuya, Prog. Theor. Phys. 16, 58 (1956).
J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1967).
K. Durczewski and M. Ausloos, Phys. Rev. B 53, 1762 (1996).