Break-up; Closed form solutions; Drop dynamics; Drop shape; External force; Liquid drop; Low-dimensional models; Modeling results; Orders of magnitude; Simple++; Computational Mechanics; Modeling and Simulation; Fluid Flow and Transfer Processes
Abstract :
[en] Liquid drops placed on substrates may vibrate, slide, take history-dependent shapes, and even detach or break up when subjected to external forces. Although CFD tools can nowadays reproduce these motions, they are affordable for at most a few drops at a time. This work provides a low-dimensional model of such drops, in which the drop shape is approximated by a rectangular cuboid. The model results in three ordinary differential equations per drop. It is sufficiently simple to allow closed-form solutions in a variety of configurations. By systematically comparing the cuboid predictions to experimental, numerical, and theoretical results previously obtained with real drops, we discuss the extent to which the cuboid approximation reproduces the order of magnitude and qualitative dependence on parameters of a series of phenomena. The latter include natural drop vibrations, the detachment of pendant drops, multiple drop shapes allowed by contact angle hysteresis, the nonlinear retraction of drops after spreading, the sliding or climbing of drops on inclined substrates, and drop-induced damping of substrate vibrations. The cuboid model therefore provides a low-cost representation of drop motion on a substrate in response to arbitrarily complex external forcing.
Disciplines :
Physics
Author, co-author :
Gilet, Tristan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Microfluidique
Language :
English
Title :
Cuboid drop: A low-dimensional model of drop dynamics on a substrate
This work has been supported by the FNRS (Fond de la Recherche Scientifique) through the research grant J.0071.23 (Rainfall interception by plant leaves).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
S. R. Herwitz, Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation, Earth Surf. Processes Landforms 12, 425 (1987) 0197-9337 10.1002/esp.3290120408.
C. D. Holder, The relationship between leaf water repellency and leaf traits in three distinct biogeographical regions, Plant Ecol. 212, 1913 (2011) 1385-0237 10.1007/s11258-011-9963-6.
T. Gilet and L. Bourouiba, Rain-induced ejection of pathogens from leaves: Revisiting the hypothesis of splash-on-film using high-speed visualization, Integr. Comp. Biol. 54, 974 (2014) 1540-7063 10.1093/icb/icu116.
A. Klamerus-Iwan, E. Blonska, J. Lasota, P. Waligorski, and A. Kalandyk, Seasonal variability of leaf water capacity and wettability under the influence of pollution in different city zones, Atmos. Pollut. Res. 9, 455 (2018) 1309-1042 10.1016/j.apr.2017.11.006.
J. André, C. Brochet, Q. Louis, A. Barral, A. Guillen, F.-T. Goh, A. Pietro, and T. Guillet, Motion of rain drops on a car side window, Emergent Sci. 3, 3 (2019) 2556-8779 10.1051/emsci/2019002.
F. Yu, J. Yang, R. Tao, Y. Tan, J. Wang, D. Wang, L. Chen, Z. Wang, and X. Deng, Aerodynamic super-repellent surfaces, Research 6, 0111 (2023) 2639-5274 10.34133/research.0111.
G. Mc Hale, H. Y. Erbil, M. I. Newton, and S. Natterer, Analysis of shape distortions in sessile drops, Langmuir 17, 6995 (2001) 0743-7463 10.1021/la010476b.
B. R. Prabhala, M. V. Panchagnula, and S. Vedantam, Three-dimensional equilibrium shapes of drops on hysteretic surfaces, Colloid Polym. Sci. 291, 279 (2013) 0303-402X 10.1007/s00396-012-2774-z.
D. Nezlobin, H. Rubin, H. Lavee, P. Sarah, and E. Sachs, Runoff initiation from raindrops falling onto planar inclined surface, Exp. Therm. Fluid Sci. 46, 8 (2013) 0894-1777 10.1016/j.expthermflusci.2012.11.004.
T. Gilet and L. Bourouiba, Fluid fragmentation shapes rain-induced foliar disease transmission, J. R. Soc. Interface 12, 20141092 (2015) 1742-5689 10.1098/rsif.2014.1092.
M. D. Erfanul Alam, J. L. Kauffman, and A. K. Dickerson, Drop ejection from vibrating damped, dampened wings, Soft Matter 16, 1931 (2020) 1744-683X 10.1039/C9SM02253H.
Y. I. Frenkel, On the behavior of liquid drops on a solid surface: 1. The sliding of drops on an inclined surface, J. Exp. Theor. Phys. 18, 658 (1948).
A. I. ElSherbini and A. M. Jacobi, Liquid drops on vertical and inclined surfaces II. A method for approximating drop shapes, J. Colloid Interface Sci. 273, 566 (2004) 0021-9797 10.1016/j.jcis.2003.12.043.
S. P. Thampi and R. Govindarajan, Minimum energy shapes of one-side-pinned static drops on inclined surfaces, Phys. Rev. E 84, 046304 (2011) 1539-3755 10.1103/PhysRevE.84.046304.
C. Semprebon and M. Brinkmann, On the onset of motion of sliding drops, Soft Matter 10, 3325 (2014) 1744-683X 10.1039/c3sm51959g.
J. B. Dupont and D. Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys. 229, 2453 (2010) 0021-9991 10.1016/j.jcp.2009.07.034.
L. C. Mayo, S. W. McCue, T. J. Moroney, W. Alison Foster, D. M. Kempthorne, J. A. Belward, and I. W. Turner, Simulating droplet motion on virtual leaf surfaces, R. Soc. Open Sci. 2, 140528 (2015) 2054-5703 10.1098/rsos.140528.
K. Okumura, F. Chevy, D. Richard, D. Quere, and C. Clanet, Water spring: a model for bouncing drops, Europhys. Lett. 62, 237 (2003) 0295-5075 10.1209/epl/i2003-00340-1.
X. Noblin, R. Kofman, and F. Celestini, Ratchetlike motion of a shaken drop, Phys. Rev. Lett. 102, 194504 (2009) 0031-9007 10.1103/PhysRevLett.102.194504.
D. Terwagne, F. Ludewig, N. Vandewalle, and S. Dorbolo, The role of the droplet deformations in the bouncing, Phys. Fluids 25, 122101 (2013) 1070-6631 10.1063/1.4832975.
T. M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Köhme, and D. Poulikakos, Spontaneous droplet trampolining on rigid superhydrophobic surfaces, Nature (London) 527, 82 (2015) 0028-0836 10.1038/nature15738.
J. Moláček and J. W. M. Bush, A quasi-static model of drop impact, Phys. Fluids 24, 127103 (2012) 1070-6631 10.1063/1.4771607.
J. H. Moon, B. H. Kang, and H.-Y. Kim, The lowest oscillation mode of a pendant drop, Phys. Fluids 18, 021702 (2006) 1070-6631 10.1063/1.2174027.
A. D. Myshkis, V. G. Babskii, N. D. Kopachevskii, L. A. Slobozhanin, and A. D. Tyuptsov, Low-Gravity Fluid Mechanics: Mathematical Theory of Capillary Phenomena (Springer-Verlag, Berlin, Heidelberg, 1987).
D. Richard and D. Quéré, Viscous drops rolling on a tilted non-wettable solid, Europhys. Lett. 48, 286 (1999) 0295-5075 10.1209/epl/i1999-00479-1.
H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, and M. Kappl, Contact angle hysteresis, Curr. Opin. Colloid Interface Sci. 59, 101574 (2022) 1359-0294 10.1016/j.cocis.2022.101574.
C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35, 85 (1971) 0021-9797 10.1016/0021-9797(71)90188-3.
P.-G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57, 827 (1985) 0034-6861 10.1103/RevModPhys.57.827.
H.-Y. Kim, H. J. Lee, and B. H. Kang, Sliding of liquid drops down an inclined solid surface, J. Colloid Interface Sci. 247, 372 (2002) 0021-9797 10.1006/jcis.2001.8156.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.043601 for additional information.
The Lagrange equation describing the evolution of (Equation presented) is decoupled from the equations governing (Equation presented) and (Equation presented). Moreover, there is no restoring force on (Equation presented), suggesting that any perturbation is necessarily marginally stable in this direction. Consequently, perturbations along (Equation presented) are not considered.
C. Pozrikidis, Stability of sessile and pendant liquid drops, J. Eng. Math. 72, 1 (2012) 0022-0833 10.1007/s10665-011-9459-3.
J. B. Bostwick and P. H. Steen, Dynamics of sessile drops. Part 1. Inviscid theory, J. Fluid Mech. 760, 5 (2014) 0022-1120 10.1017/jfm.2014.582.
P. H. Steen, C.-T. Chang, and J. B. Bostwick, Droplet motions fill a periodic table, Proc. Natl. Acad. Sci. USA 116, 4849 (2019) 0027-8424 10.1073/pnas.1817065116.
F. Zhang, X. Zhou, and H. Ding, Effects of gravity on natural oscillations of sessile drops, J. Fluid Mech. 962, A10 (2023) 0022-1120 10.1017/jfm.2023.252.
S. Mettu and M. K. Chaudhury, Vibration spectroscopy of a sessile drop and its contact line, Langmuir 28, 14100 (2012) 0743-7463 10.1021/la302958m.
Most experimental investigations of sessile drop vibrations (e.g., Moon [23]) involved substrates with significant hysteresis. Therefore, for vibrations of small amplitude, contact angle variations remained smaller than contact angle hysteresis, and the contact lines remained pinned. These pinned vibrations cannot be reproduced by the present cuboid model.
D. Bartolo, C. Josserand, and D. Bonn, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, J. Fluid Mech. 545, 329 (2005) 0022-1120 10.1017/S0022112005007184.
The hysteresis was not measured in Bartolo [38], but it was claimed to be very weak.
T. Podgorski, J.-M. Flesselles, and L. Limat, Corners, cusps and pearls in running drops, Phys. Rev. Lett. 87, 036102 (2001) 0031-9007 10.1103/PhysRevLett.87.036102.
T. Podgorski, Ruissellement en conditions de mouillage partiel, Ph.D. thesis, Université Pierre et Marie Curie, 2003.
N. Le Grand, A. Daerr, and L. Limat, Shape and motion of drops sliding down an inclined plane, J. Fluid Mech. 541, 293 (2005) 0022-1120 10.1017/S0022112005006105.
M. Costalonga and P. Brunet, Directional motion of vibrated sessile drops: A quantitative study, Phys. Rev. Fluids 5, 023601 (2020) 2469-990X 10.1103/PhysRevFluids.5.023601.
P. Brunet, J. Eggers, and R. D. Deegan, Vibration-induced climbing of drops, Phys. Rev. Lett. 99, 144501 (2007) 0031-9007 10.1103/PhysRevLett.99.144501.
M. D. Erfanul Alam and A. K. Dickerson, Sessile liquid drops damp vibrating structures, Phys. Fluids 33, 062113 (2021) 1070-6631 10.1063/5.0055382.
J. Xie, J. Xu, W. Shang, and K. Zhang, Mode selection between sliding and rolling for droplet on inclined surface: Effect of surface wettability, Int. J. Heat Mass Transfer 122, 45 (2018) 0017-9310 10.1016/j.ijheatmasstransfer.2018.01.098.
C. Antonini, F. Villa, I. Bernagozzi, A. Amirfazli, and M. Marengo, Drop rebound after impact: The role of the receding contact angle, Langmuir 29, 16045 (2013) 0743-7463 10.1021/la4012372.
D. Richard, C. Clanet, and D. Quéré, Contact time of a bouncing drop, Nature (London) 417, 811 (2002) 0028-0836 10.1038/417811a.
J. C. Bird, R. Dhiman, H.-M. Kwon, and K. K. Varanasi, Reducing the contact time of a bouncing drop, Nature (London) 503, 385 (2013) 0028-0836 10.1038/nature12740.
C. Antonini, F. Villa, and M. Marengo, Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: Outcomes, timing, and rebound maps, Exp. Fluids 55, 1713 (2014) 0723-4864 10.1007/s00348-014-1713-9.
Y. H. Yeong, J. Burton, E. Loth, and I. S. Bayer, Drop impact and rebound dynamics on an inclined superhydrophobic surface, Langmuir 30, 12027 (2014) 0743-7463 10.1021/la502500z.
S. Yun and G. Lim, Ellipsoidal drop impact on a solid surface for rebound suppression, J. Fluid Mech. 752, 266 (2014) 0022-1120 10.1017/jfm.2014.332.
P. B. Weisensee, J. Ma, Y. H. Shin, J. Tian, Y. Chang, W. P. King, and N. Miljkovic, Droplet impact on vibrating superhydrophobic surfaces, Phys. Rev. Fluids 2, 103601 (2017) 2469-990X 10.1103/PhysRevFluids.2.103601.
J.-H. Kim, J. P. Rothstein, and J. K. Shang, Dynamics of a flexible superhydrophobic surface during a drop impact, Phys. Fluids 30, 072102 (2018) 1070-6631 10.1063/1.5028127.
X. Huang, X. Dong, J. Li, and J. Liu, Droplet impact induced large deflection of a cantilever, Phys. Fluids 31, 062106 (2019) 1070-6631 10.1063/1.5099344.
G. Upadhyay, V. Kumar, and R. Bhardwaj, Bouncing droplets on an elastic, superhydrophobic cantilever beam, Phys. Fluids 33, 042104 (2021) 1070-6631 10.1063/5.0047868.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.