Poster (Scientific congresses and symposiums)
Using Deep Convolutional Neural Networks to Model Face Learning
Legrand, Raphaël; Defays, Daniel; Sougné, Jacques et al.
2024Annual Meeting of the Belgian Association for Psychological Sciences
Peer reviewed
 

Files


Full Text
Poster_V11.pdf
Author preprint (581.55 kB) Creative Commons License - Attribution, No Derivatives
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Face learning; Face recognition; deep learning; DCNNs; DCNN; Variability; Cost-efficiency
Abstract :
[en] How do we learn faces? Current prevailing theories, largely based on early computational models, suggest that various instances of a face we have encountered are incorporated into averaged representations (Burton et al., 2005). However, recent human data supports an alternative account of face learning: the cost-efficient encoding mechanism (Devue & de Sena, 2023). This theory explains a surprising differentiation in recognition performance for faces that are stable or variable in appearance. The former would be represented more coarsely than the latter, which would incorporate higher-resolution areas corresponding to intrinsic diagnostic features. Concurrently, since the introduction of the averaging theory, artificial facial recognition systems have improved immensely, largely due to the emergence of deep learning-based systems. Here, we capitalized on deep convolutional neural networks to test predictions derived from the cost-efficient theory. Specifically, we examined whether these networks would also show the appearance-based differentiation in representations. To do so, we produced a database of images of 38 actors classified as “stable” and “variable” based on independent ratings that we fed to the well-established “DeepFace” model (Taigman et al., 2014). We then compared the content of the facial representations built by the model for each category of actors. Preliminary principal component analyses suggest that variable faces are represented in a more complex fashion than stable faces, similar to the hypothesized way of representing faces in humans. The present results suggest that an AI-based investigation of the cost-efficient framework holds merit and will serve as a baseline for future research.
Disciplines :
Theoretical & cognitive psychology
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Legrand, Raphaël ;  Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Aging & Memory
Defays, Daniel ;  Université de Liège - ULiège > Département de Psychologie
Sougné, Jacques ;  Université de Liège - ULiège > UDI FPLSE
Devue, Christel  ;  Université de Liège - ULiège > Département de Psychologie > Psychologie et neurosciences cognitives
Language :
English
Title :
Using Deep Convolutional Neural Networks to Model Face Learning
Publication date :
31 May 2024
Event name :
Annual Meeting of the Belgian Association for Psychological Sciences
Event place :
Brussels, Belgium
Event date :
31-05-2024
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBi :
since 28 May 2024

Statistics


Number of views
81 (33 by ULiège)
Number of downloads
17 (6 by ULiège)

Bibliography


Similar publications



Contact ORBi