Balthazart, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie de la différenciation sexuelle du cerveau
Language :
English
Title :
Introduction to the chemical neuroanatomy of birdsong.
Appeltants D., Absil P., Balthazart J., and Ball G.F. Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry. J. Chem. Neuroanat. 18 (2000) 117-133
Appeltants D., Ball G.F., and Balthazart J. The origin of catecholaminergic inputs to the song control nucleus RA in canaries. Neuroreport 13 (2002) 649-653
Armstrong E.A. Bird Display and Behavior (1942), Cambridge University Press, Cambridge
Arnold A.P. The passerine bird song system as a model in neuroendocrine research. J. Exp. Zool. 4 Suppl. (1990) 22-30
Arnold A.P., Nottebohm F., and Pfaff D.W. Hormone concentrating cells in vocal control areas of the brain of the zebra finch (Poephila guttata). J. Comp. Neurol. 165 (1976) 487-512
Aronov D., Andalman A.S., and Fee M.S. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320 (2008) 630-634
Ball G.F. Chemical neuroanatomical studies of the steroid-sensitive songbird vocal control system: a comparative approach. In: Balthazart J. (Ed). Hormones, Brain and Behaviour in Vertebrates. 1. Sexual Differentiation, Neuroanatomical Aspects, Neurotransmitters and Neuropeptides vol. 8 (1990), Comp. Physiol., Karger, Basel 148-167
Ball G.F. Neurochemical specializations associated with vocal learning and production in songbirds and budgerigars. Brain Behav. Evol. 44 (1994) 234-246
Ball, G.F., Balthazart, J., 2007. The neuroendocrinology and neurochemistry of birdsong. In: Lajtha, A. (Ed.), Handbook of Neurochemistry and Molecular Neurobiology, 3rd edition. Blaustein, J.D. (volume Ed.). Springer, New York. pp. 419-457.
Ball G.F., and Balthazart J. Seasonal and hormonal modulation of neurotransmitter systems in the song control circuit. J. Chem. Neuroanat. 39 (2010) 82-95
Ball G.F., Faris P.L., Hartman B.K., and Wingfield J.C. Immunohistochemical localization of neuropeptides in the vocal control regions of two songbird species. J. Comp. Neurol. 268 (1988) 171-180
Ball G.F., Riters L.V., and Balthazart J. Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front. Neuroendocrinol. 23 (2002) 137-178
Balthazart J., Foidart A., Wilson E.M., and Ball G.F. Immunocytochemical localization of androgen receptors in the male songbird and quail brain. J. Comp. Neurol. 317 (1992) 407-420
Barclay S.R., and Harding C.F. Androstenedione modulation of monoamine levels and turnover in hypothalamic and vocal control nuclei in the male zebra finch: steroid effects on brain monoamines. Brain Res. 459 (1988) 333-343
Barclay S.R., and Harding C.F. Differential modulation of monoamine levels and turnover rates by estrogen and/or androgen in hypothalamic and vocal control nuclei of male zebra finches. Brain Res. 523 (1990) 251-262
Benton S., Nelson D.A., Marler P., and DeVoogd T.J. Anterior forebrain pathway is needed for stable song expression in adult male white-crowned sparrows (Zonotrichia leucophrys). Behav. Brain Res. 96 (1998) 135-150
Bernard D.J., Casto J.M., and Ball G.F. Sexual dimorphism in the volume of song control nuclei in European starlings: assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors. J. Comp. Neurol. 334 (1993) 559-570
Bolhuis J.J. Chasin' the trace: the neural substrate of birdsong memory. In: Zeigler H.P., and Marler P. (Eds). Neuroscience of Birdsong (2008), Cambridge University Press, Cambridge, UK 271-281
Bolhuis J.J., and Gahr M. Neural mechanisms of birdsong memory. Nat. Rev. Neurosci. 7 (2006) 347-357
Bottjer S.W., and Alexander G. Localization of met-enkephalin and vasoactive intestinal polypeptide in the brains of male zebra finches. Brain Behav. Evol. 45 (1995) 153-177
Bottjer S.W., and Johnson F. Circuits, hormones, and learning, vocal behavior in songbirds. J. Neurobiol. 33 (1997) 602-618
Bottjer S.W., Miesner E.A., and Arnold A.P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224 (1984) 901-903
Brainard M.S. Contributions of the anterior forebrain pathway to vocal plasticity. Ann. N.Y. Acad. Sci. 1016 (2004) 377-394
Brainard M.S., and Doupe A.J. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404 (2000) 762-766
Brenowitz E.A., and Beecher M.D. Song learning in birds: diversity and plasticity, opportunities and challenges. Trends Neurosci. 28 (2005) 127-132
Brenowitz E.A., Margoliash D., and Nordeen K.W. An introduction to birdsong and the avian song system. J. Neurobiol. 33 (1997) 495-500
Castelino C.B., and Schmidt M.F. What birdsong can teach us about the central noradrenergic system. J. Chem. Neuroanat. 39 (2010) 96-111
Casto J.M., and Ball G.F. Characterization and localization of D1 dopamine receptors in the sexually dimorphic vocal control nucleus, area X, and the basal ganglia of European starlings. J. Neurobiol. 25 (1994) 767-780
Catchpole C.K., and Slater P.J.B. Bird Song. Biological Themes and Variations (2008), Cambridge University Press, Cambridge, UK
Deutch A.Y., and Roth R.H. Neurotransmitters. In: Squire L., Berg D., Bloom F., Du Lac S., Ghosh A., and Spitzer N. (Eds). Fundamental neuroscience (2008), Elsevier, Amsterdam 133-155
Devoogd T.J., Krebs J.R., Healy S.D., and Purvis A. Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proc. Biol. Sci. 254 (1993) 75-82
Ding L., and Perkel D.J. Dopamine modulates excitability of spiny neurons in the avian basal ganglia. J. Neurosci. 22 (2002) 5210-5218
Doupe A.J., and Kuhl P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22 (1999) 567-631
Doupe A.J., Perkel D.J., Reiner A., and Stern E.A. Birdbrains could teach basal ganglia research a new song. Trends Neurosci. 28 (2005) 353-363
Doupe A.J., Solis M.M., Kimpo R., and Boettiger C.A. Cellular, circuit, and synaptic mechanisms in song learning. Ann. N.Y. Acad. Sci. 1016 (2004) 495-523
Farries M.A., and Perkel D.J. A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J. Neurosci. 22 (2002) 3776-3787
Gahr M., Güttinger H.-R., and Kroodsma D.E. Estrogen receptors in the avian brain: survey reveals general distribution forebrain areas unique to songbirds. J. Neurol. Comp. 327 (1993) 112-122
Gale S.D., and Perkel D.J. Anatomy of a songbird basal ganaglia circuit essential for vocal learning and plasticity. J. Chem. Neuroanat. 39 (2010) 124-131
Gentner T.Q., and Ball G.F. A neuroethological perspective on the perception of vocal communication signals. In: Pisoni D.B., and Remez R.E. (Eds). The Handbook of Speech Perception (2005), Blackwell Publishing, Malden, MA 651-675
Hessler N.A., and Doupe A.J. Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J. Neurosci. 19 (1999) 10461-10481
Hessler N.A., and Doupe A.J. Social context modulates singing-related neural activity in the songbird forebrain. Nat. Neurosci. 2 (1999) 209-211
Hinde R.A. Ethology. Its Nature and Relations with other Sciences (1982), Oxford University Press, New York pp. 1-320
Iversen L.L., Iversen S.D., Bloom F.E., and Roth R.H. Introduction to Neuropsychopharmacology (2009), Oxford University Press, Oxford
Jarvis E.D., and Nottebohm F. Motor-driven gene expression. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 4097-4102
Jarvis E.D., Scharff C., Grossman M.R., Ramos J.A., and Nottebohm F. For whom the bird sings: context-dependent gene expression. Neuron 21 (1998) 775-788
Jusczyk P.W. The Discovery of Spoken Language (1997), The MIT Press, Cambridge, MA
Kao M.H., Doupe A.J., and Brainard M.S. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433 (2005) 638-643
Kimpo R.R., and Doupe A.J. FOS is induced by singing in distinct neuronal populations in a motor network. Neuron 18 (1997) 315-325
Konishi M. Effects of deafening on song development in American robin and black-headed grossbeak. Z. Tierpsychol. 22 (1965) 584-599
Konishi M. The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22 (1965) 770-783
Konishi M., and Nottebohm F. Experimental studies on the ontogeny of avian vocalizations. In: Hinde R.A. (Ed). Bird Vocalizations (1969), Cambridge University Press, Cambridge 29-48
Kroodsma D., and Konishi M. A suboscine bird (Eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim. Behav. 42 (1991) 477-487
Kubikova L., and Kostal L. Dopaminergic system in birdsong learning and maintenance. J. Chem. Neuroanat. 39 (2010) 112-123
Kubikova, L., Wada, K., Jarvis, E.D., in press. Dopamine receptors in a songbird brain. J. Comp. Neurol.
Kubota M., and Saito N. NMDA receptors participate differentially in two different synaptic inputs in neurons of the zebra finch robust nucleus of the archistriatum in vitro. Neurosci. Lett. 125 (1991) 107-109
Leonardo A., and Fee M.S. Ensemble coding of vocal control in birdsong. J. Neurosci. 25 (2005) 652-661
Leonardo A., and Konishi M. Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399 (1999) 466-470
Lewis J.W., Ryan S.M., Arnold A.P., and Butcher L.L. Evidence for catecholamine projection to area X in the zebra finch. J. Comp. Neurol. 196 (1981) 347-354
Li R., and Sakaguchi H. Cholinergic innervation of the song control nuclei by the ventral paleostriatum in the zebra finch: a double-labeling study with retrograde fluorescent tracers and choline acetyltransferase immunohistochemistry. Brain Res. 763 (1997) 239-246
Li X., Wang X.J., Tannenhauser J., Podell S., Mukherjee P., Hertel M., Biane J., Masuda S., Nottebohm F., and Gaasterland T. Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 6834-6839
Luo M.M., and Perkel D.J. Long-range GABAergic projection in a circuit essential for vocal learning. J. Comp. Neurol. 403 (1999) 68-84
MacDougall-Shackleton S.A., and Ball G.F. Comparative studies of sex differences in the song-control system of songbirds. Trends Neurosci. 22 (1999) 432-436
Margoliash D. Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. J. Neurosci. 6 (1986) 1643-1661
Marler P. A comparative approach to vocal learning: song development in white-crowned sparrows. J. Comp. Physiol. Psychol. 71 (1970) 1-25
Marler P. Birdsong and speech development: could there be parallels?. Am. Sci. 58 (1970) 669-679
Marler P. Sensitive period and the role of specific and general sensory stimulation in birdsong learning. In: Rauschecker J.P., and Marler P. (Eds). Imprinting and Cortical Plasticity (1987), John Wiley & Sons, New York 99-135
Marler P. Song-learning: the interface with neuroethology. Trends Neurosci. 14 (1991) 199-206
Mooney R., and Konishi M. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 4075-4079
Nick T.A., and Konishi M. Neural song preference during vocal learning in the zebra finch depends on age and state. J. Neurobiol. 62 (2005) 231-242
Nordeen K.W., and Nordeen E.J. Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav. Neural Biol. 57 (1992) 58-66
Nottebohm F. Brain pathways for vocal learning in birds: a review of the first 10 years. In: Sprague J.M., and Epstein A.N. (Eds). Progress in Psychobiology and Physiological Psychology vol. 9 (1980), Academic Press, New York 85-214
Nottebohm F. The search for neural mechanisms that define the sensitive period for song learning in birds. Neth. J. Zool. 43 (1993) 193-234
Nottebohm F. The neural basis of birdsong. PLoS Biol. 3 5 (2005) e164
Nottebohm F., Kelley D.B., and Paton J.A. Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol. 207 (1982) 344-357
Nottebohm F., Stokes T.M., and Leonard C.M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165 (1976) 457-486
Olveczky B.P., Andalman A.S., and Fee M.S. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 3 (2005) e153
Reiner A.D., Karle E.J., Anderson K.D., and Medina L. Catecholaminergic perikarya and fibers in the avian nervous system. In: Smeets W.J.A.J., and Reiner A.D. (Eds). Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates (1994), Cambridge University Press, Cambridge 135-181
Reiner A.D., Perkel J., Bruce L., Butler A., Csillag A., Kuenzel W., Medina L., Paxinos G., Shimizu T., Striedter G., Wild M., Ball G.F., Durand S., Güntürkün O., Lee D.W., Mello C.V., White S.A., Hough G., Kubikova L., Smulders T.V., Wada K., Dugas-Ford J., Husband S., Yamamoto K., Yu J., Siang C., and Jarvis E.D. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473 (2004) 377-414
Remage-Healey L., London S.E., and Schlinger B.A. Birdsong and the neural production of steroids. J. Chem. Neuroanat. 39 (2010) 72-81
Replogle K., Arnold A.P., Ball G.F., Band M., Bensch S., Brenowitz E.A., Dong S., Drnevich J., Ferris M., George J.M., Gong G., Hasselquist D., Hernandez A.G., Kim R., Lewin H.A., Liu L., Lovell P.V., Mello C.V., Naurin S., Rodriguez-Zas S., Thimmapuram J., Wade J., and Clayton D.F. The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genom. 9 (2008) 131
Riters L.V. Evidence for opioid involvement in the motivation to sing. J. Chem. Neuroanat. 39 (2010) 141-150
Riters L.V., Eens M., Pinxten R., and Ball G.F. Seasonal changes in the densities of α2-noradrenergic receptors are inversely related to changes in testosterone and the volumes of song control nuclei in male European starlings. J. Comp. Neurol. 444 (2002) 63-74
Ryan S., and Arnold A.P. Evidence for cholinergic participation in the control of bird song: acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain. J. Comp. Neurol. 202 (1981) 211-219
Ryan S.M., Arnold A.P., and Elde R.P. Enkephalin-like immunoreactivity in vocal control regions of the zebra finch brain. Brain Res. 229 (1981) 236-240
Sakaguchi H., Asano M., Yamamoto K., and Saito N. Release of endogenous gamma-aminobutyric acid from vocalization nucleus, the robust nucleus of the archistriatum of zebra finch in vitro. Brain Res. 410 (1987) 380-384
Scharff C., and Nottebohm F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. J. Neurosci. 11 (1991) 2896-2913
Shea S.D., and Margoliash D. Behavioral state-dependent reconfiguration of song-related network activity and cholinergic systems. J. Chem. Neuroanat. 39 (2010) 132-140
Simpson H.B., and Vicario D.S. Brain pathways for learned and unlearned vocalizations differ in zebra finches. J. Neurosci. 10 (1990) 1541-1556
Smith G.T., Brenowitz E.A., and Prins G.S. Use of PG-21 immunocytochemistry to detect androgen receptors in the songbird brain. J. Histochem. Cytochem. 44 (1996) 1075-1080
Sohrabji F., Nordeen E.J., and Nordeen K.W. Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav. Neural Biol. 53 (1990) 51-63
Thompson J.A., Wu W., Bertram R., and Johnson F. Auditory-dependent vocal recovery in adult male zebra finches is facilitated by lesion of a forebrain pathway that includes the basal ganglia. J. Neurosci. 27 (2007) 12308-12320
Thorpe W.H. The learning of song patterns by birds, with especial reference to the song of the chaffinch, Fringilla coelebs. Ibis 100 (1958) 535-570
Voorhuis T.A.M., de Kloet E.R., and de Wied D. The vasotocin system in the canary brain. In: Balthazart J. (Ed). Hormones, Brain and Behaviour in Vertebrates. Vol. 1 Sexual Differentiation, Neuroanatomical Aspects, Neurotransmitters and Neuropeptides (1990), Karger, Basel, New York 168-179
Wada K., Sakaguchi H., Jarvis E.D., and Hagiwara M. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J. Comp. Neurol. 476 (2004) 44-64
Wild J.M. The auditory-vocal-respiratory axis in birds. Brain Behav. Evol. 44 (1994) 192-209
Wild J.M. Functional neuroanatomy of the sensorimotor control of singing. Ann. N.Y. Acad. Sci. 1016 (2004) 438-462
Yu A.C., and Margoliash D. Temporal hierarchical control of singing in birds. Science 273 (1996) 1871-1875
Zeigler H.P., and Marler P. Behavioral neurobiology of birdsong. Ann. N.Y. Acad. Sci. 1016 (2004) 1-788
Zeigler H.P., and Marler P. Neuroscience of Birdsong (2008), Cambridge University Press, Cambridge, UK 550 pp.
Zuschratter W., and Scheich H. Distribution of choline acetyltransferase and acetylcholinesterase in the vocal motor system of zebra finches. Brain Res. 513 (1990) 193-201