Is waste heat recovery a promising avenue for the Carnot battery? Techno-economic optimisation of an electric booster-assisted Carnot battery integrated into different data centres
Carnot battery; Data centre; Multi-criteria optimisation; Techno-economic analysis; Thermally integrated pumped thermal energy storage (TI-PTES); Waste heat recovery; Datacenter; Heat pumps; Multi-criterion optimization; Techno-Economic analysis; Techno-economics; Thermal energy storage; Thermally integrated pumped thermal energy storage; Waste-heat recovery; Renewable Energy, Sustainability and the Environment; Nuclear Energy and Engineering; Fuel Technology; Energy Engineering and Power Technology
Abstract :
[en] The transition to intermittent renewable energies will necessitate the integration of storage. An interesting technology is the Carnot battery (CB), a novel power-to-heat-to-power system, capable of harnessing waste energy streams. While initial studies have indicated that, under ideal conditions, CB can be competitive with conventional technologies such as chemical batteries, their economic viability in real-world applications remains uncertain. To fill this gap, this work explores the techno-economic potential of electric booster-assisted CB integrated within data centres. Motivation for this case study is the recovery of waste heat, leading to an improved electrical storage efficiency. To maximise the energy self-sufficiency and the internal rate of return, we have applied multi-criteria optimisation to the system design, under three different thermal integration scenarios and for two sets of climatic conditions, using a thermodynamic model and time series from a real data centre. Our analyses suggest that current projections for electricity prices and CB costs yield payback periods exceeding a decade, but that these could fall below ten years if the CB capital costs were halved. Furthermore, it turns out that the choice of optimum charging system (i.e. right balance between heat pump and electrical heater) is contingent on the heat source temperature and availability. For higher temperatures (e.g. 60 °C), heat pumps emerge as the financially most attractive option, thanks to their superior coefficient of performance, whereas for lower temperatures (< 25 °C), resistive heaters are preferable. Results also show that when the aim is to increase the energy self-sufficiency, there exist an efficiency/charging capacity trade-off, which causes a dilemma for the system design. On the one hand, heat pumps are vital to increase the efficiency of the CB, but on the other hand, as the amount of thermal energy available at its source is limited by the data centre operations, electrical boosters are indispensable to increase the charging capacity. To soften this dilemma and enhance the techno-economic performance of thermally integrated CB, future research should explore more efficient booster configurations, such as dual heat source heat pumps.
Disciplines :
Energy
Author, co-author :
Laterre, Antoine ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Dumont, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Thermodynamique appliquée
Contino, Francesco; Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Language :
English
Title :
Is waste heat recovery a promising avenue for the Carnot battery? Techno-economic optimisation of an electric booster-assisted Carnot battery integrated into different data centres
The first author acknowledges the support of Fonds de la Recherche Scientifique - FNRS [ 40014566 FRIA-B1 ].Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.
Olympios, A.V., McTigue, J.D., Farres-Antunez, P., Tafone, A., Romagnoli, A., Li, Y., Ding, Y., Steinmann, W.-D., Wang, L., Chen, H., Markides, C.N., Progress and prospects of thermo-mechanical energy storage—a critical review. Prog Energy, 3(2), 2021, 022001, 10.1088/2516-1083/abdbba URL https://iopscience.iop.org/article/10.1088/2516-1083/abdbba.
Ramsebner, J., Haas, R., Ajanovic, A., Wietschel, M., The sector coupling concept: A critical review. Wiley Interdiscip Rev: Energy Environ, 10(4), 2021, e396 Publisher: Wiley Online Library.
Steinmann, W.-D., Bauer, D., Jockenhöfer, H., Johnson, M., Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183 (2019), 185–190, 10.1016/j.energy.2019.06.058 URL http://www.sciencedirect.com/science/article/pii/S0360544219311879.
Frate, G.F., Antonelli, M., Desideri, U., A novel pumped thermal electricity storage (PTES) system with thermal integration. Appl Therm Eng 121 (2017), 1051–1058, 10.1016/j.applthermaleng.2017.04.127 URL https://linkinghub.elsevier.com/retrieve/pii/S135943111634114X.
Weitzer, M., Müller, D., Steger, D., Charalampidis, A., Karellas, S., Karl, J., Organic flash cycles in rankine-based carnot batteries with large storage temperature spreads. Energy Convers Manage, 255, 2022, 115323, 10.1016/j.enconman.2022.115323 URL https://www.sciencedirect.com/science/article/pii/S0196890422001194.
Dumont, O., Frate, G.F., Pillai, A., Lecompte, S., De Paepe, M., Lemort, V., Carnot battery technology: A state-of-the-art review. J Energy Storage, 32, 2020, 10.1016/j.est.2020.101756.
Frate, G.F., Ferrari, L., Desideri, U., Rankine carnot batteries with the integration of thermal energy sources: A review. Energies, 13(18), 2020, 4766, 10.3390/en13184766 URL https://www.mdpi.com/1996-1073/13/18/4766. Number: 18 Publisher: Multidisciplinary Digital Publishing Institute.
Jockenhöfer, H., Steinmann, W.-D., Bauer, D., Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 145 (2018), 665–676, 10.1016/j.energy.2017.12.087 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544217321308.
Dumont, O., Lemort, V., Mapping of performance of pumped thermal energy storage (carnot battery) using waste heat recovery. Energy, 211, 2020, 118963, 10.1016/j.energy.2020.118963 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544220320703.
Staub, S., Bazan, P., Braimakis, K., Müller, D., Regensburger, C., Scharrer, D., Schmitt, B., Steger, D., German, R., Karellas, S., Pruckner, M., Schlücker, E., Will, S., Karl, J., Reversible heat pump–organic rankine cycle systems for the storage of renewable electricity. Energies, 11(6), 2018, 1352, 10.3390/en11061352 URL https://www.mdpi.com/1996-1073/11/6/1352. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage. Energy Convers Manage, 208, 2020, 112530, 10.1016/j.enconman.2020.112530 URL https://linkinghub.elsevier.com/retrieve/pii/S0196890420300662.
Weitzer, M., Müller, D., Karl, J., Two-phase expansion processes in heat pump – ORC systems (carnot batteries) with volumetric machines for enhanced off-design efficiency. Renew Energy 199 (2022), 720–732, 10.1016/j.renene.2022.08.143 URL https://www.sciencedirect.com/science/article/pii/S0960148122013222.
Lu, P., Luo, X., Wang, J., Chen, J., Liang, Y., Yang, Z., He, J., Wang, C., Chen, Y., Thermodynamic analysis and evaluation of a novel composition adjustable carnot battery under variable operating scenarios. Energy Convers Manage, 269, 2022, 116117, 10.1016/j.enconman.2022.116117 URL https://www.sciencedirect.com/science/article/pii/S0196890422009013.
Zhang, M., Shi, L., Hu, P., Pei, G., Shu, G., Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency. J Energy Storage, 57, 2023, 106234, 10.1016/j.est.2022.106234 URL https://www.sciencedirect.com/science/article/pii/S2352152X2202223X.
Vecchi, A., Knobloch, K., Liang, T., Kildahl, H., Sciacovelli, A., Engelbrecht, K., Li, Y., Ding, Y., Carnot battery development: A review on system performance, applications and commercial state-of-the-art. J Energy Storage, 55, 2022, 105782, 10.1016/j.est.2022.105782 URL https://www.sciencedirect.com/science/article/pii/S2352152X22017704.
Frate, G.F., Ferrari, L., Sdringola, P., Desideri, U., Sciacovelli, A., Thermally integrated pumped thermal energy storage for multi-energy districts: Integrated modelling, assessment and comparison with batteries. J Energy Storage, 61, 2023, 106734, 10.1016/j.est.2023.106734 URL https://www.sciencedirect.com/science/article/pii/S2352152X23001317.
Hu, S., Yang, Z., Li, J., Duan, Y., Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios. Energy Convers Manage, 236, 2021, 114072, 10.1016/j.enconman.2021.114072 URL https://linkinghub.elsevier.com/retrieve/pii/S019689042100248X.
Fan, R., Xi, H., Energy, exergy, economic (3E) analysis, optimization and comparison of different carnot battery systems for energy storage. Energy Convers Manage, 252, 2022, 115037, 10.1016/j.enconman.2021.115037 URL https://www.sciencedirect.com/science/article/pii/S0196890421012139.
Ökten, K., Kurşun, B., Thermo-economic assessment of a thermally integrated pumped thermal energy storage (TI-PTES) system combined with an absorption refrigeration cycle driven by low-grade heat source. J Energy Storage, 51, 2022, 104486, 10.1016/j.est.2022.104486 URL https://www.sciencedirect.com/science/article/pii/S2352152X22005084.
Zhang, Y., Xu, L., Li, J., Zhang, L., Yuan, Z., Technical and economic evaluation, comparison and optimization of a carnot battery with two different layouts. J Energy Storage, 55, 2022, 105583, 10.1016/j.est.2022.105583 URL https://www.sciencedirect.com/science/article/pii/S2352152X22015717.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria economic analysis of a pumped thermal electricity storage (PTES) with thermal integration. Front Energy Res, 8, 2020, 53, 10.3389/fenrg.2020.00053 URL https://www.frontiersin.org/article/10.3389/fenrg.2020.00053/full.
Sorknæs, P., Thellufsen, J.Z., Knobloch, K., Engelbrecht, K., Yuan, M., Economic potentials of carnot batteries in 100% renewable energy systems. Energy, 282, 2023, 128837, 10.1016/j.energy.2023.128837 URL https://www.sciencedirect.com/science/article/pii/S0360544223022314.
Tassenoy, R., Couvreur, K., Beyne, W., De Paepe, M., Lecompte, S., Techno-economic assessment of carnot batteries for load-shifting of solar PV production of an office building. Renew Energy 199 (2022), 1133–1144, 10.1016/j.renene.2022.09.039 URL https://www.sciencedirect.com/science/article/pii/S0960148122013891.
Poletto C, De Pascale A, Ottaviano S, Dumont O, Alessandra Maria A, Bianchi M. Performance and economic assessment of a thermally integrated reversible HP/ORC Carnot battery applied to data centers. In: Proceedings of the 7th international seminar on ORC power systems 2023. Seville; 2023.
McTigue, J.D., Farres-Antunez, P., J, K.S., Markides, C.N., White, A.J., Techno-economic analysis of recuperated joule-brayton pumped thermal energy storage. Energy Convers Manage, 252, 2022, 115016, 10.1016/j.enconman.2021.115016 URL https://www.sciencedirect.com/science/article/pii/S0196890421011924.
Ebrahimi, K., Jones, G.F., Fleischer, A.S., A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew Sustain Energy Rev 31 (2014), 622–638, 10.1016/j.rser.2013.12.007 URL https://www.sciencedirect.com/science/article/pii/S1364032113008216.
Pfenninger, S., Staffell, I., Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (2016), 1251–1265, 10.1016/j.energy.2016.08.060 URL https://www.sciencedirect.com/science/article/pii/S0360544216311744.
Staffell, I., Pfenninger, S., Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114 (2016), 1224–1239, 10.1016/j.energy.2016.08.068 URL https://www.sciencedirect.com/science/article/pii/S0360544216311811.
Frate, G.F., Baccioli, A., Bernardini, L., Ferrari, L., Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage. Renew Energy 201 (2022), 636–650, 10.1016/j.renene.2022.10.097 URL https://www.sciencedirect.com/science/article/pii/S0960148122015993.
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 53:6 (2014), 2498–2508 Publisher: ACS Publications.
Pitarch I. Mocholí, M., High capacity heat pump development for sanitary hot water production. (Ph.D. thesis), 2017, Universitat Politècnica de València, Valencia (Spain), 10.4995/Thesis/10251/81858 URL https://riunet.upv.es/handle/10251/81858. University: Universitat Politècnica de València.
Cao, K.-K., Nitto, A.N., Sperber, E., Thess, A., Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with wind powered thermal energy systems. Energy 164 (2018), 925–936, 10.1016/j.energy.2018.08.173 URL https://www.sciencedirect.com/science/article/pii/S0360544218317092.
Maraver, D., Royo, J., Lemort, V., Quoilin, S., Systematic optimization of subcritical and transcritical organic rankine cycles (ORCs) constrained by technical parameters in multiple applications. Appl Energy 117 (2014), 11–29, 10.1016/j.apenergy.2013.11.076 URL https://www.sciencedirect.com/science/article/pii/S0306261913009859.
Laterre A, Dumont O, Lemort V, Contino F. Systematic and multi-criteria optimisation of subcritical thermally integrated Carnot batteries (TI-PTES) in an extended domain. In: Proceedings of the 7th international seminar on ORC power systems 2023. Seville; 2023.
Hassan, A.H., Corberán, J.M., Ramirez, M., Trebilcock-Kelly, F., Payá, J., A high-temperature heat pump for compressed heat energy storage applications: Design, modeling, and performance. Energy Rep 8 (2022), 10833–10848, 10.1016/j.egyr.2022.08.201 URL https://www.sciencedirect.com/science/article/pii/S2352484722016456.
Holmgren, W.F., Hansen, C.W., Mikofski, M.A., Pvlib python: a python package for modeling solar energy systems. J Open Source Softw, 3(29), 2018, 884, 10.21105/joss.00884 URL https://joss.theoj.org/papers/10.21105/joss.00884.
Coppitters, D., De Paepe, W., Contino, F., Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage. Energy, 213, 2020, 118798, 10.1016/j.energy.2020.118798 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544220319058.
De Soto, W., Klein, S.A., Beckman, W.A., Improvement and validation of a model for photovoltaic array performance. Sol Energy 80:1 (2006), 78–88, 10.1016/j.solener.2005.06.010 URL https://www.sciencedirect.com/science/article/pii/S0038092X05002410.
SUNPOWER. X-SERIES RESIDENTIAL SOLAR PANELS: SUPPLEMENTARY TECHNICAL SPECIFICATIONS.
Rampinelli, G.A., Krenzinger, A., Chenlo Romero, F., Mathematical models for efficiency of inverters used in grid connected photovoltaic systems. Renew Sustain Energy Rev 34 (2014), 578–587, 10.1016/j.rser.2014.03.047 URL https://www.sciencedirect.com/science/article/pii/S1364032114002081.
Lee, T.-S., Second-law analysis to improve the energy efficiency of screw liquid chillers. Entropy 12:3 (2010), 375–389, 10.3390/e12030375 URL https://www.mdpi.com/1099-4300/12/3/375. Number: 3 Publisher: Molecular Diversity Preservation International.
Montero Carrero, M., Decoupling heat and electricity production from micro gas turbines: numerical, experimental and economic analysis of the micro humid air turbine cycle. (Ph.D. thesis), 2018, Vrije Universiteit Brussel URL http://hdl.handle.net/2013/.
Eurostat, M., Electricity prices for non-household consumers - bi-annual data (from 2007 onwards). 2022.
Laterre A, Dumont O, Lemort V, Contino F. Design Optimisation and Global Sensitivity Analysis of a Carnot Battery Towards Integration in a Data Centre under Techno-Economic Uncertainties. In: Proceedings of 5th SEE SDEWES. Vlorë, Albania; 2022.
Coppitters, D., Verleysen, K., De Paepe, W., Contino, F., How can renewable hydrogen compete with diesel in public transport? robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty. Appl Energy, 312, 2022, 118694, 10.1016/j.apenergy.2022.118694 URL https://www.sciencedirect.com/science/article/pii/S0306261922001581.
Agency, D.E., Technology data for generation of electricity and district heating: Tech. rep., 2023, Danish Energy Agency.
Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., Bertsch, S.S., High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 152 (2018), 985–1010, 10.1016/j.energy.2018.03.166 URL https://www.sciencedirect.com/science/article/pii/S0360544218305759.
Meyers, S., Schmitt, B., Vajen, K., The future of low carbon industrial process heat: A comparison between solar thermal and heat pumps. Sol Energy 173 (2018), 893–904, 10.1016/j.solener.2018.08.011 URL https://www.sciencedirect.com/science/article/pii/S0038092X18307801.
Shamoushaki, M., Niknam, P.H., Talluri, L., Manfrida, G., Fiaschi, D., Development of cost correlations for the economic assessment of power plant equipment. Energies, 14(9), 2021, 2665, 10.3390/en14092665 URL https://www.mdpi.com/1996-1073/14/9/2665.
Coppitters, D., Tsirikoglou, P., Paepe, W.D., Kyprianidis, K., Kalfas, A., Contino, F., RHEIA: Robust design optimization of renewable hydrogen and derived energy carrier systems. J Open Source Softw, 7(75), 2022, 4370, 10.21105/joss.04370 URL https://joss.theoj.org/papers/10.21105/joss.04370.
Lemmens, S., Cost engineering techniques and their applicability for cost estimation of organic rankine cycle systems. Energies, 9(7), 2016, 485, 10.3390/en9070485 URL http://www.mdpi.com/1996-1073/9/7/485.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:2 (2002), 182–197 Publisher: IEEE.
Coppitters, D., De Paepe, W., Contino, F., Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty. Energy, 229, 2021, 120692, 10.1016/j.energy.2021.120692 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544221009403.
Hlal, M.I., Ramachandaramurthya, V.K., Padmanaban, S., Kaboli, H.R., Pouryekta, A., Abdullah, T.A.R.b.T., NSGA-II and MOPSO based optimization for sizing of hybrid PV/wind/battery energy storage system. Int J Power Electron Drive Syst (IJPEDS) 10:1 (2019), 463–478, 10.11591/ijpeds.v10.i1.pp463-478 URL https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/14754. Number: 1.
Lithium-ion battery pack prices rise for first time to an average of $151/kWh. 2022 URL https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/. Section: Press Release.
Dumont, O., Quoilin, S., Lemort, V., Experimental investigation of a reversible heat pump/organic rankine cycle unit designed to be coupled with a passive house to get a net zero energy building. Int J Refrig 54 (2015), 190–203, 10.1016/j.ijrefrig.2015.03.008 URL https://linkinghub.elsevier.com/retrieve/pii/S0140700715000638.