P use efficiency; chlorophyll fluorescence; phosphatases; phosphate solubilizing bacteria; polyphosphates; rhizosphere; Microbiology; Microbiology (medical)
Abstract :
[en] Coupling phosphate-solubilizing bacteria (PSB) with P fertilizers, including polyphosphates (PolyP), was reported as eco-efficient approach to enhance P use efficiency. Although PSB have been recently reported to hydrolyze PolyP, the plant growth promoting mechanisms of PolyP-PSB co-application were not yet uncovered. This study aims to evaluate the effect of a PSB consortium (PSBCs) on growth, P use efficiency (PUE), and wheat yield parameters under PolyP (PolyB) application. Co-application of PolyB-PSBCs significantly enhanced wheat growth at 75 days after sowing (DAS) compared to 30 DAS. A significant increase in shoot dry biomass (47%), shoot inorganic P content (222%), PUE (91%), and root P absorption efficiency (RPAE, 99%) was noted compared to unfertilized plants. Similarly, the PolyB-PSBCs co-application enhanced morphological root traits at 30 DAS, while acid phosphatase activities (root and rhizosphere), RPAE, and PUE were significantly increased at 75 DAS. The improved wheat P acquisition could be attributed to a lower investment in root biomass production, and significant induction of acid phosphatase activity in roots and rhizosphere soil under PolyB-PSBCs co-application. Consequently, the PolyB-PSBCs co-application significantly improved aboveground performance, which is reflected by increased shoot nutrient contents (P 300%, K 65%), dry weight (54%), and number (50%) of spikes. Altogether, this study provides relevant evidence that co-application of PolyP-PSBCs can be an integrated and environmentally preferred P fertilization approach owing to the dual effects of PolyP and PSBCs on wheat PUE.
Disciplines :
Agriculture & agronomy
Author, co-author :
Khourchi, Said ; Université de Liège - ULiège > TERRA Research Centre ; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Elhaissoufi, Wissal; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Ibnyasser, Ammar; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Haddine, Meryem; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Ghani, Rachid; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Delaplace, Pierre ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Bargaz, Adnane; Agrobiosciences Program, College for Sustainable Agriculture and Environmental Sciences, , Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
Language :
English
Title :
Integrated use of polyphosphate and P-solubilizing bacteria enhanced P use efficiency and growth performance of durum wheat.
Achat D. L. Morel C. Bakker M. R. Augusto L. Pellerin S. Gallet-Budynek A. et al. (2010). Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biol. Biochem. 42, 2231–2240. doi: 10.1016/j.soilbio.2010.08.023
Bargaz A. Elhaissoufi W. Khourchi S. Benmrid B. Borden K. A. Rchiad Z. (2021). Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol. Res. 252:126842. doi: 10.1016/J.MICRES.2021.126842, PMID: 34438221
Cai L. Wang Y. Tigabu M. Hou X. Wu P. Zhou C. et al. (2020). Strength and size of phosphorus-rich patches determine the foraging strategy of Neyraudia reynaudiana. BMC Plant Biol. 100, 7323–7338. doi: 10.1007/s00253-016-7566-9
Chai Y. N. Schachtman D. P. (2022). Root exudates impact plant performance under abiotic stress. Trends Plant Sci. 27, 80–91. doi: 10.1016/j.tplants.2021.08.003, PMID: 34481715
Chen H. Jarosch K. A. Mészáros É. Frossard E. Zhao X. Oberson A. (2021). Repeated drying and rewetting differently affect abiotic and biotic soil phosphorus (P) dynamics in a sandy soil: a 33P soil incubation study. Soil Biol. Biochem. 153:108079. doi: 10.1016/j.soilbio.2020.108079
Chtouki M. Laaziz F. Naciri R. Garré S. Nguyen F. Oukarroum A. (2022). Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Sci. Reports 121, 12, 1–13. doi: 10.1038/s41598-022-10703-0, PMID: 35461340
Chtouki M. Naciri R. Garré S. Nguyen F. Oukarroum A. (2021). Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: effect on photosynthetic performance and phenotypic traits. Funct. Plant Biol. 49, 505–516. doi: 10.1071/FP21035, PMID: 34147138
Corstanje R. Reddy K. R. Prenger J. P. Newman S. Ogram A. V. (2007). Soil microbial eco-physiological response to nutrient enrichment in a sub-tropical wetland. Ecol. Indic. 7, 277–289. doi: 10.1016/J.ECOLIND.2006.02.002
Dawwam G. E. Elbeltagy A. Emara H. M. Abbas I. H. Hassan M. M. (2013). Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58, 195–201. doi: 10.1016/j.aoas.2013.07.007
De Zutter N. Ameye M. Bekaert B. Verwaeren J. De Gelder L. Audenaert K. (2022). Uncovering new insights and misconceptions on the effectiveness of phosphate solubilizing Rhizobacteria in plants: a meta-analysis. Front. Plant Sci. 13:457. doi: 10.3389/FPLS.2022.858804, PMID: 35310667
Dewez D. Goltsev V. Kalaji H. M. Oukarroum A. (2018). Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr. Plant Biol. 16, 15–21. doi: 10.1016/j.cpb.2018.11.006
Dick R. P. Tabatabai M. A. (1987). Factors affecting hydrolysis of polyphosphates in soils. Soil Sci. 143, 97–104. doi: 10.1097/00010694-198702000-00003
Elhaissoufi W. Ghoulam C. Barakat A. Zeroual Y. Bargaz A. (2022). Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res. 38, 13–28. doi: 10.1016/J.JARE.2021.08.014, PMID: 35572398
Elhaissoufi W. Khourchi S. Ibnyasser A. Ghoulam C. Rchiad Z. Zeroual Y. et al. (2020). Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere p solubilization. Front. Plant Sci. 11:979. doi: 10.3389/fpls.2020.00979, PMID: 32765544
El-Mejjaouy Y. Lahrir M. Naciri R. Zeroual Y. Benjamin B. Dumont B. et al. (2022). How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves (Triticum durum L.). Environ. Exp. Bot. 194:104762. doi: 10.1016/J.ENVEXPBOT.2021.104762
Gao Y. Wang X. Shah J. A. Chu G. (2020). Polyphosphate fertilizers increased maize (Zea mays L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil. J. Soils Sediments 20, 1–11. doi: 10.1007/s11368-019-02375-7
Hamilton J. G. Grosskleg J. Hilger D. Bradshaw K. Carlson T. Siciliano S. D. et al. (2018). Chemical speciation and fate of tripolyphosphate after application to a calcareous soil. Geochem. Trans. 19:1. doi: 10.1186/s12932-017-0046-z, PMID: 29313216
Honvault N. Houben D. Nobile C. Firmin S. Lambers H. Faucon M. P. (2021). Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant Soil 461, 137–150. doi: 10.1007/s11104-020-04584-3
Khourchi S. Delaplace P. Bargaz A. (2023). Polyphosphate fertilizer use efficiency strongly relies on soil physicochemical properties and root-microbial activities. Geoderma 429:116281. doi: 10.1016/j.geoderma.2022.116281
Khourchi S. Elhaissoufi W. Loum M. Ibnyasser A. Haddine M. Ghani R. et al. (2022a). Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiol. Res. 262:127094. doi: 10.1016/J.MICRES.2022.127094, PMID: 35749891
Khourchi S. Oukarroum A. Tika A. Delaplace P. Bargaz A. (2022b). Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance. BMC Plant Biol. 22, 309–315. doi: 10.1186/S12870-022-03683-W, PMID: 35754019
Kusi N. Y. O. Stevens W. B. Sintim H. Y. Garcia Y. Garcia A. Mesbah A. O. (2021). Phosphorus fertilization and enhanced efficiency products effects on sugarbeet. Ind. Crop. Prod. 171:113887. doi: 10.1016/J.INDCROP.2021.113887
Lambers H. Brundrett M. C. Raven J. A. Hopper S. D. (2011). Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 348, 7–27. doi: 10.1007/s11104-011-0977-6
Loudari A. Mayane A. Naciri R. Zeroual Y. Colinet G. Oukarroum A. (2022a). Root morphological and anatomical responses to increasing phosphorus concentration of wheat plants grown under salinity. Plant Stress 6:100121. doi: 10.1016/j.stress.2022.100121
Loudari A. Mayane A. Zeroual Y. Colinet G. Oukarroum A. (2022b). Photosynthetic performance and nutrient uptake under salt stress: differential responses of wheat plants to contrasting phosphorus forms and rates. Front. Plant Sci. 13:4576. doi: 10.3389/FPLS.2022.1038672, PMID: 36438086
Lynch J. P. (2007). Roots of the second green revolution. Aust. J. Bot. 55, 493–512. doi: 10.1071/BT06118
Magney T. S. Eitel J. U. H. Huggins D. R. Vierling L. A. (2016). Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol. 217, 46–60. doi: 10.1016/J.AGRFORMET.2015.11.009
Marcelino P. R. F. Milani K. M. L. Mali S. Santos O. J. A. P. D. de Oliveira A. L. M. (2016). Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems. Appl. Microbiol. Biotechnol. 100, 7323–7338. doi: 10.1007/s00253-016-7566-9, PMID: 27147530
McBeath T. M. Armstrong R. D. Lombi E. McLaughlin M. J. Holloway R. E. (2005). Responsiveness of wheat (Triticum aestivum) to liquid and granular phosphorus fertilisers in southern Australian soils. Soil Res. 43:203. doi: 10.1071/SR04066
McBeath T. M. Lombi E. McLaughlin M. J. Bünemann E. K. (2007). Polyphosphate-fertilizer solution stability with time, temperature, and pH. J. Plant Nutr. Soil Sci. 170, 387–391. doi: 10.1002/jpln.200625166
Naz M. Y. Sulaiman S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. J. Control. Release 225, 109–120. doi: 10.1016/j.jconrel.2016.01.037, PMID: 26809006
Rahi M. P. Pathania V. Gulati A. Singh B. Bhanwra R. K. Tewari R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-a contents of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46, 222–229. doi: 10.1016/j.apsoil.2010.08.008
Rawat P. Sharma A. Shankhdhar D. Shankhdhar S. C. (2022). Improvement of phosphorus uptake, phosphorus use efficiency, and grain yield of upland rice (Oryza sativa L.) in response to phosphate-solubilizing bacteria blended with phosphorus fertilizer. Pedosphere 32, 752–763. doi: 10.1016/J.PEDSPH.2022.06.005
Richardson A. E. Simpson R. J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996. doi: 10.1104/pp.111.175448, PMID: 21606316
Rutkowska B. Szulc W. Sosulski T. Stepień W. (2014). Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ. 60, 198–203. doi: 10.17221/914/2013-pse
Sasse J. Martinoia E. Northen T. (2018). Feed your friends: do Plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41. doi: 10.1016/J.TPLANTS.2017.09.003, PMID: 29050989
Secco D. Bouain N. Rouached A. Prom-u-thai C. Hanin M. Pandey A. K. et al. (2017). Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Crit. Rev. Biotechnol. 37, 898–910. doi: 10.1080/07388551.2016.1268089, PMID: 28076998
Seyahjani E. A. Yarnia M. Farahvash F. Benam M. B. K. Rahmani H. A. (2020). Influence of rhizobium, pseudomonas and mycorrhiza on some physiological traits of red beans (Phaseolus vulgaris l.) under different irrigation conditions. Legum. Res. 43, 81–86. doi: 10.18805/LR-454
Shen J. Li C. Mi G. Li L. Yuan L. Jiang R. et al. (2013). Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J. Exp. Bot. 64, 1181–1192. doi: 10.1093/JXB/ERS342, PMID: 23255279
Shen J. Yuan L. Zhang J. Li H. Bai Z. Chen X. et al. (2011). Phosphorus dynamics: from soil to plant. Plant Physiol. 156, 997–1005. doi: 10.1104/pp.111.175232, PMID: 21571668
Torres-Dorante L. O. Claassen N. Steingrobe B. Olfs H.-W. (2006). Fertilizer-use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn. J. Plant Nutr. Soil Sci. 169, 509–515. doi: 10.1002/jpln.200520584
Veneklaas E. J. Lambers H. Bragg J. Finnegan P. M. Lovelock C. E. Plaxton W. C. et al. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195, 306–320. doi: 10.1111/j.1469-8137.2012.04190.x, PMID: 22691045
Wang P. Lombi E. Zhao F. J. Kopittke P. M. (2016). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 21, 699–712. doi: 10.1016/J.TPLANTS.2016.04.005
Wen Z. Li H. Shen Q. Tang X. Xiong C. Li H. et al. (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 223, 882–895. doi: 10.1111/nph.15833, PMID: 30932187
Wu C. Wang Z. Sun H. Guo S. (2006). Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis, chlorophyll a fluorescence, and photosynthesis in Larix olgensis seedlings. Front. China 1, 170–175. doi: 10.1007/s11461-006-0019-3
Zhang L. Fan J. Ding X. He X. Zhang F. Feng G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol. Biochem. 74, 177–183. doi: 10.1016/J.SOILBIO.2014.03.004
Zheng B. X. Hao X. L. Ding K. Zhou G. W. Chen Q. L. Zhang J. B. et al. (2017). Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Sci. Rep. 7, 1–10. doi: 10.1038/srep42284, PMID: 28181569
Zhou C. Zhu L. Ma Z. Wang J. (2017). Improved iron acquisition of Astragalus sinicus under low iron-availability conditions by soil-borne bacteria Burkholderia cepacia. J. Plant Interact. 13, 9–20. doi: 10.1080/17429145.2017.1407000