[en] This paper presents a comprehensive investigation of the swelling behaviour of a compacted bentonite–sand mixture subjected to hydration under constant volume conditions. Contrary to previous studies, the tested sample was isotropically compacted before being hydrated under constant volume conditions until full saturation was reached. The total axial pressure, total radial pressures at four different heights of the sample, and injected water volume were recorded over time. The experimental data reveal a complex and non-uniform evolution of the axial and radial stresses over time, as well as anisotropy of the total stresses, which persist at the saturated equilibrated state. To gain further insights, a numerical analysis was performed using an advanced hydromechanical framework for partially saturated porous media, accounting for the evolving microstructure of the material. The complex evolution of the total axial and radial pressures with time is attributed to the advancing hydration and swelling front in the sample, along with the development of irreversible strains. The good agreement between the numerical results and the experimental data enables validation of the developed framework. Implications for engineered barriers in deep geological disposal of radioactive waste are discussed.
Disciplines :
Civil engineering
Author, co-author :
Dieudonné, Anne-Catherine ; Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands
Gatabin, Claude; Den-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université de Paris-Saclay, Gif-Sur-Yvette, France
Dridi, Wissem; Den-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université de Paris-Saclay, Gif-Sur-Yvette, France
Talandier, Jean; French National Radioactive Waste Management Agency (Andra), Châtenay-Malabry Cedex, France
Collin, Frédéric ; Université de Liège - ULiège > Département ArGEnCo
Charlier, Robert; Urban and Environmental Engineering Research Unit, University of Liege, Liege, Belgium
Language :
English
Title :
Heterogeneous Swelling of an Isotropically Compacted Bentonite-Based Material: Experimental Observations and Modelling
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Funding text :
The authors wish to acknowledge the French National Radioactive Waste Management Agency (Andra) and the Belgian National Fund of Scientific Research for their financial support.
Agus SS, Schanz T (2008) A method for predicting swelling pressure of compacted bentonites. Acta Geotech 3:125–137 DOI: 10.1007/s11440-008-0057-0
Agus SS, Arifin YF, Tripathy S, Schanz T (2013) Swelling pressure—suction relationship of heavily compacted bentonite–sand mixtures. Acta Geotech 8(2):155–165 DOI: 10.1007/s11440-012-0189-0
Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430 DOI: 10.1680/geot.1990.40.3.405
Alonso EE, Romero E, Hoffmann C (2011) Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study. Géotechnique 61(4):329–344 DOI: 10.1680/geot.2011.61.4.329
ASTM D4546 (2014) Standard test methods for one-dimensional swell or collapse of soils. American Society for Testing Materials International, West Conshohocken, Pennsylvania, USA
Bernachy-Barbe F (2021) Homogenization of bentonite upon saturation: density and pressure fields. Appl Clay Sci 209:106122 DOI: 10.1016/j.clay.2021.106122
Brackley JJA (1973) Swell pressure and free swell in compacted clay. In: Proceeding of 3rd International Conference on Expansive soils, Haifa 1, 169–176
Bucher F, Müller-Vonmoos M (1989) Bentonite as a containment barrier for the disposal of highly radioactive wastes. Appl Clay Sci 4(2):157–177 DOI: 10.1016/0169-1317(89)90006-9
Charlier R (1987) Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux). Ph.D. thesis, Université de Liège
Collin F, Li XL, Radu JP, Charlier R (2002) Thermo-hydro-mechanical coupling in clay barriers. Eng Geol 64:179–193 DOI: 10.1016/S0013-7952(01)00124-7
Cui YJ, Yahia-Aissa M, Delage P (2002) A model for the volume change behavior of heavily compacted swelling clays. Eng Geol 64(2–3):233–250 DOI: 10.1016/S0013-7952(01)00113-2
de La Vaissière R (2013) Hydration versus gas percolation in bentonite. In-situ experiment PGZ2. Experimental borehole results. FORGE Report D3.18, 99 pp
Della Vecchia G, Dieudonné AC, Jommi C, Charlier R (2015) Accounting for evolving pore size distribution in water retention models for compacted clays. Int J Num Anal Methods Geomech 39:702–723 DOI: 10.1002/nag.2326
Denis JD (1991) Compaction and swelling of Ca-smectite in water and in CaCl2 solutions: water activity measurements and matric resistance to compaction. Clay and Clay Minerals 39(1):35–42 DOI: 10.1346/CCMN.1991.0390105
Dieudonné AC, Della Vecchia G, Charlier R (2017) A water retention model for compacted bentonites. Can Geotech J 54(7):915–925 DOI: 10.1139/cgj-2016-0297
Dieudonné AC and Charlier R (2017) Evaluation of the instantaneous profile method for the determination of the relative permeability function. Springer Series in Geomechanics and Geoengineering, 181–188
Dieudonné AC, Levasseur S, Charlier R, Della Vecchia G and Jommi C (2013) A water retention model for compacted clayey soils. Computational Geomechanics, COMGEO III - Proceedings of the 3nd International Symposium on Computational Geomechanics: 23–31
Gatabin C, Talandier J, Collin F, Charlier R, Dieudonné AC (2016) Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Appl Clay Sci 121–122:57–62 DOI: 10.1016/j.clay.2015.12.019
Harrington JF, Daniel KA, Wisseall AC, Sellin P (2020) Bentonite homogenisation during the closure of void spaces. Int J Rock Mech Min Sci 136:104535 DOI: 10.1016/j.ijrmms.2020.104535
Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohes-Frict Mater 5(5):341–371 DOI: 10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C
Jacinto AC, Villar MV, Ledesma A (2012) Influence of water density on the water-retention curve of expansive clays. Géotechnique 62(8):657–667 DOI: 10.1680/geot.7.00127
Lee JO, Lim JG, Kang IM, Kwon S (2012) Swelling pressures of compacted Ca-bentonite. Eng Geol 129–130:20–26 DOI: 10.1016/j.enggeo.2012.01.005
Lloret A, Villar MV, Sánchez M, Gens A, Pintado X, Alonso EE (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1):27–40 DOI: 10.1680/geot.2003.53.1.27
Middelhoff M, Cuisinier O, Masrouri F, Talandier J, Conil N (2020) Combined impact of selected material properties and environmental conditions on the swelling pressure of compacted claystone/bentonite mixtures. Appl Clay Sci 184:05389 DOI: 10.1016/j.clay.2019.105389
Olivella S, Carrera J, Gens A, Alonso EE (1994) Non isothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293 DOI: 10.1007/BF00613282
Panday S, Corapcioglu MY (1989) Reservoir transport equations by compositional approach. Transp Porous Media 4:369–393 DOI: 10.1007/BF00165780
Pusch R (1992) Use of bentonite for isolation of radioactive waste products. Clay Miner 27(3):353–361 DOI: 10.1180/claymin.1992.027.3.08
Rao SM, Thyagaraj T (2007) Swell–compression behaviour of compacted clays under chemical gradients. Can Geotech J 44(5):520–532 DOI: 10.1139/t07-002
Rawat A, Baille W, Tripathy S (2019) Swelling behavior of compacted bentonite-sand mixture during water infiltration. Eng Geol 257:10514 DOI: 10.1016/j.enggeo.2019.05.018
Rawat A, Lang L, Baille W, Dieudonné AC, Collin F (2020) Coupled hydro-mechanical analysis of expansive soils: parametric identification and calibration. J Rock Mech Geotech Eng 12(3):620–629 DOI: 10.1016/j.jrmge.2019.12.013
Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328 DOI: 10.1680/geot.2011.61.4.313
Roscoe KH and Burland JB (1968) On the generalized stress–strain behaviour of the "wet" clay. In: Heyman J and Leckic F (eds) Engineering plasticity. Cambridge, UK, pp 535–609
Saba S, Barnichon JD, Cui YJ, Tang AM, Delage P (2014a) Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture. J Rock Mech Geotech Eng 6(2):126–132 DOI: 10.1016/j.jrmge.2014.01.006
Saba S, Cui YJ, Tang AM, Barnichon JD (2014b) Investigation of the swelling behaviour of compacted bentonite–sand mixture by mock-up tests. Can Geotech J 51(12):1399–1412 DOI: 10.1139/cgj-2013-0377
Sato H, Suzuki S (2003) Fundamental study on the effect of an orientation of clay particles on diffusion pathway in compacted bentonite. Appl Clay Sci 23(1–4):51–60 DOI: 10.1016/S0169-1317(03)00086-3
Sellin P, Leupin O (2013) The use of clay as an engineered barrier in radioactive-waste management—a review. Clays Clay Miner 61(6):477–498 DOI: 10.1346/CCMN.2013.0610601
Sridharan A, Rao AS, Sivapullaiah PV (1986) Swelling pressure of clays. Geotech Test J 9(1):24–33 DOI: 10.1520/GTJ10608J
Sun H, Masin D, Najser J, Nedela V, Navrátilová E (2019) Bentonite microstructure and saturation evolution in wetting—drying cycles evaluated using ESEM, MIP and WRC measurements. Géotechnique 69(8):713–726 DOI: 10.1680/jgeot.17.P.253
Tang AM, Cui YJ (2010) Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. J Rock Mech Geotech Eng 2(1):91–96
Tang AM, Cui YJ, Le TT (2008) A study on the thermal conductivity of compacted bentonites. Appl Clay Sci 41(3–4):181–189 DOI: 10.1016/j.clay.2007.11.001
van Eekelen HAM (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4(1):89–101 DOI: 10.1002/nag.1610040107
Villar MV, Lloret A (2007) Dismantling of the first section of the FEBEX in situ test: THM laboratory tests on the bentonite blocks retrieved. Phys Chem Earth 32:716–729 DOI: 10.1016/j.pce.2006.03.009
Villar MV, Lloret A (2008) Influence of dry density and water content on the swelling of a compacted bentonite. Appl Clay Sci 39(1–2):38–49 DOI: 10.1016/j.clay.2007.04.007
Villar MV, Sanchez M, Gens A (2008) Behaviour of a bentonite barrier in the laboratory: experimental results up to 8 years and numerical simulation. Phys Chem Earth 33:S476–S485 DOI: 10.1016/j.pce.2008.10.055
Villar MV, Gutiérrez-Álvarez C, Campos G (2023) Bentonite swelling into a void under suction or water flow. Acta Geotech 18:1495–1513 DOI: 10.1007/s11440-022-01702-6
Voltolini M, Wenk HR, Mondol NH, Bjorlykke K, Jahren J (2009) Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures. Geophysics 74(1):D13–D23 DOI: 10.1190/1.3002557
Wang Q, Tang AM, Cui YJ, Delage P, Gatmiri B (2012) Experimental study on the swelling behaviour of bentonite/claystone mixture. Eng Geol 124:59–66 DOI: 10.1016/j.enggeo.2011.10.003
Wang Q, Cui YC, Tang AM, Barnichon JD, Saba S, Ye WM (2013a) Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration. Eng Geol 164:67–76 DOI: 10.1016/j.enggeo.2013.06.013
Wang Q, Tang AM, Cui YJ, Delage P, Barnichon JD, Ye WM (2013b) The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture. Soils Found 53(2):232–245 DOI: 10.1016/j.sandf.2013.02.004
Zeng G, Cui YJ, Zhang F, Conil N, Talandier J (2020) Effect of technological voids on swelling behaviour of compacted bentonite–claystone mixture. Can Geotech J 57(12):593–660 DOI: 10.1139/cgj-2019-0339
Zeng G, Cui YJ, Conil N, Talandier J (2022) Effects of technological voids and hydration time on the hydro-mechanical behaviour of compacted bentonite/claystone mixture. Géotechnique 72(1):34–47 DOI: 10.1680/jgeot.19.P.220