[en] Understanding the strengths and limitations of the modelling capacity of urban flooding is of utmost importance as such events are becoming increasingly frequent and extreme. In this study, we assess two computational models against laboratory observations of urban flooding in a reduced-scale physical model of an idealized urban district. Four urban layouts were considered, involving each three inlets and three outlets, as well as a combination of three- and four-branch crossroads together with open spaces. The first model (2D) solves the shallow-water equations, while the second one (3D) solves the Reynolds-averaged Navier-Stokes equations. Both models accurately predict the flow depths in the inlet branches. For the discharge partition between the outlets, deviations between the computations and the laboratory observations remain close to the experimental uncertainties (maximum 2.5 percent-points). The velocity fields computed in 3D generally match the measured surface velocity fields. In urban layouts involving mostly a network of streets, the depth-averaged velocity fields computed by the 2D model agree remarkably well with those of the 3D model, with differences not exceeding 10%, despite the presence of helicoidal flow (revealed by the 3D computations). In configurations with large open areas, the 3D model captures generally well the trajectory and velocity distribution of the main surface flow jet and recirculations; but the 2D model does not perform as well as it does in relatively channelized flow regions. Visual inspection of the jet trajectories computed by the 2D model in large open areas reveals that they substantially deviate from the observations.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Li, Xuefang ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Dellinger, Guilhem; National school for water and environmental engineering, Strasbourg, France > ICube laboratory
Erpicum, Sébastien ; Université de Liège - ULiège > Urban and Environmental Engineering
Chen, Lihua; Guangxi University, Nanning, China > Guangxi Key Laboratory of Disaster Prevention and Engineering Safety
Yu, Shuyue; Guangxi University, Nanning, China > Guangxi Key Laboratory of Disaster Prevention and Engineering Safety
Guiot, Léo; National school for water and environmental engineering, Strasbourg, France > ICube laboratory
Archambeau, Pierre ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Pirotton, Michel ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
2D and 3D Computational Modeling of Surface Flooding in Urbanized Floodplains: Modeling Performance for Various Building Layouts
Arrault, A., Finaud-Guyot, P., Archambeau, P., Bruwier, M., Erpicum, S., Pirotton, M., & Dewals, B. (2016). Hydrodynamics of long-duration urban floods: Experiments and numerical modelling. Natural Hazards and Earth System Sciences, 16(6), 1413–1429. 1413–1429-1413–1429. https://doi.org/10.5194/nhess-16-1413-2016
Bazin, P. H., Mignot, E., & Paquier, A. (2017). Computing flooding of crossroads with obstacles using a 2D numerical model. Journal of Hydraulic Research, 55(1), 72–84. https://doi.org/10.1080/00221686.2016.1217947
Bosseler, B., Salomon, M., Schluter, M., & Rubinato, M. (2021). Living with urban flooding: A continuous learning process for local municipalities and lessons learnt from the 2021 events in Germany. Water, 13(19), 2769. https://doi.org/10.3390/w13192769
Brown, R., & Chanson, H. (2012). Suspended sediment properties and suspended sediment flux estimates in an inundated urban environment during a major flood event. Water Resources Research, 48(11). W11523-W11523. https://doi.org/10.1029/2012wr012381
Brown, R., & Chanson, H. (2013). Turbulence and suspended sediment measurements in an urban environment during the Brisbane River flood of January 2011. Journal of Hydraulic Engineering, 139(2), 244–253. https://doi.org/10.1061/(asce)hy.1943-7900.0000666
Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., & Dewals, B. (2017). Shallow-water models with anisotropic porosity and merging for flood modelling on Cartesian grids. Journal of Hydrology, 554, 693–709. https://doi.org/10.1016/j.jhydrol.2017.09.051
Camnasio, E., Erpicum, S., Archambeau, P., Pirotton, M., & Dewals, B. (2014). Prediction of mean and turbulent kinetic energy in rectangular shallow reservoirs. Engineering Applications of Computational Fluid Mechanics, 8(4), 586–597. https://doi.org/10.1080/19942060.2014.11083309
Chang, T.-J., Wang, C.-H., Chen, A. S., & Djordjević, S. (2018). The effect of inclusion of inlets in dual drainage modelling. Journal of Hydrology, 559, 541–555. https://doi.org/10.1016/j.jhydrol.2018.01.066
Chen, X., Zhu, D. Z., & Steffler, P. M. (2017). Secondary currents induced mixing at channel confluences. Canadian Journal of Civil Engineering, 44(12), 1071–1083. https://doi.org/10.1139/cjce-2016-0228
Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research, 139, 3–10. https://doi.org/10.1016/j.envres.2015.02.028
de Almeida, G. A. M., Bates, P., & Ozdemir, H. (2018). Modelling urban floods at submetre resolution: Challenges or opportunities for flood risk management? Journal of Flood Risk Management, 11(S2), S855–S865. https://doi.org/10.1111/jfr3.12276
Dewals, B., Kitsikoudis, V., Angel Mejía-Morales, M., Archambeau, P., Mignot, E., Proust, S., et al. (2023). Can the 2D shallow water equations model flow intrusion into buildings during urban floods? Journal of Hydrology, 619, 129231. https://doi.org/10.1016/j.jhydrol.2023.129231
Dottori, F., Di Baldassarre, G., & Todini, E. (2013). Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling. Water Resources Research, 49(9), 6079–6085. 6079–6085-6079–6085. https://doi.org/10.1002/wrcr.20406
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., & Scorzini, A. R. (2016). INSYDE: A synthetic, probabilistic flood damage model based on explicit cost analysis. Natural Hazards and Earth System Sciences, 16(12), 2577–2591. https://doi.org/10.5194/nhess-16-2577-2016
El Kadi Abderrezzak, K., Paquier, A., & Mignot, E. (2009). Modelling flash flood propagation in urban areas using a two-dimensional numerical model. Natural Hazards, 50(3), 433–460. 433–460-433–460. https://doi.org/10.1007/s11069-008-9300-0
Erpicum, S., Meile, T., Dewals, B. J., Pirotton, M., & Schleiss, A. J. (2009). 2D numerical flow modeling in a macro-rough channel. International Journal for Numerical Methods in Fluids, 61(11), 1227–1246. https://doi.org/10.1002/fld.2002
Fang, Q. (2016). Adapting Chinese cities to climate change. Science, 354(6311), 425–426. 425–426-425–426. https://doi.org/10.1126/science.aak9826
Fekete, A., & Sandholz, S. (2021). Here comes the flood, but not failure? Lessons to learn after the heavy rain and pluvial floods in Germany 2021. Water, 13(21), 3016. https://doi.org/10.3390/w13213016
Finaud-Guyot, P., Garambois, P. A., Araud, Q., Lawniczak, F., François, P., Vazquez, J., & Mosé, R. (2018). Experimental insight for flood flow repartition in urban areas. Urban Water Journal, 15(3), 242–250. https://doi.org/10.1080/1573062x.2018.1433861
Finaud-Guyot, P., Garambois, P. A., Dellinger, G., Lawniczak, F., & François, P. (2019). Experimental characterization of various scale hydraulic signatures in a flooded branched street network. Urban Water Journal, 16(9), 609–624. https://doi.org/10.1080/1573062x.2020.1713173
Güney, M. S., Tayfur, G., Bombar, G., & Elci, S. (2014). Distorted physical model to study sudden partial dam break flows in an urban area. Journal of Hydraulic Engineering, 140(11). 05014006-05014006. https://doi.org/10.1061/(asce)hy.1943-7900.0000926
Guo, K. H., Guan, M. F., & Yu, D. P. (2021). Urban surface water flood modelling - A comprehensive review of current models and future challenges. Hydrology and Earth System Sciences, 25(5), 2843–2860. https://doi.org/10.5194/hess-25-2843-2021
Guo, X., Cheng, J., Yin, C., Li, Q., Chen, R., & Fang, J. (2023). The extraordinary Zhengzhou flood of 7/20, 2021: How extreme weather and human response compounding to the disaster. Cities, 134, 104168. https://doi.org/10.1016/j.cities.2022.104168
Hettiarachchi, S., Wasko, C., & Sharma, A. (2018). Increase in flood risk resulting from climate change in a developed urban watershed – The role of storm temporal patterns. Hydrology and Earth System Sciences, 22(3), 2041–2056. https://doi.org/10.5194/hess-22-2041-2018
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
Hossain Anni, A., Cohen, S., & Praskievicz, S. (2020). Sensitivity of urban flood simulations to stormwater infrastructure and soil infiltration. Journal of Hydrology, 588, 125028. https://doi.org/10.1016/j.jhydrol.2020.125028
Kankanamge, N., Yigitcanlar, T., Goonetilleke, A., & Kamruzzaman, M. (2020). Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood tweets. International Journal of Disaster Risk Reduction, 42, 101360. https://doi.org/10.1016/j.ijdrr.2019.101360
Kreibich, H., Thaler, T., Glade, T., & Molinari, D. (2019). Preface: Damage of natural hazards: Assessment and mitigation. Natural Hazards and Earth System Sciences, 19(3), 551–554. 551–554-551–554. https://doi.org/10.5194/nhess-19-551-2019
Leandro, J., Schumann, A., & Pfister, A. (2016). A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. Journal of Hydrology, 535, 356–365. https://doi.org/10.1016/j.jhydrol.2016.01.060
Le Coz, J., Jodeau, M., Hauet, A., Marchand, B., & Le Boursicaud, R. (2014). Image-based velocity and discharge measurements in field and laboratory river engineering studies using the free FUDAA-LSPIV software. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow).
Le Coz, J., Patalano, A., Collins, D., Guillén, N. F., García, C. M., Smart, G. M., et al. (2016). Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New Zealand. Journal of Hydrology, 541, 766–777. https://doi.org/10.1016/j.jhydrol.2016.07.036
Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M., & Dewals, B. (2021). Influence of urban forms on long-duration urban flooding: Laboratory experiments and computation analysis. Journal of Hydrology, 603, 127034. https://doi.org/10.1016/j.jhydrol.2021.127034
Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M., & Dewals, B. (2022a). Laboratory modelling of urban flooding. [Datasets]. Zenodo, 9(1), 159. https://doi.org/10.5281/zenodo.5254164
Li, X., Erpicum, S., Mignot, E., Archambeau, P., Pirotton, M., & Dewals, B. (2022b). Laboratory modelling of urban flooding. Scientific Data, 9(1), 159. https://doi.org/10.1038/s41597-022-01282-w
Li, X., Erpicum, S., Mignot, E., Archambeau, P., Rivière, N., Pirotton, M., & Dewals, B. (2020). Numerical insights into the effects of model geometric distortion in laboratory experiments of urban flooding. Water Resources Research, 56(7), e2019WR026774–e022019WR026774. https://doi.org/10.1029/2019wr026774
Li, X., Kitsikoudis, V., Mignot, E., Archambeau, P., Pirotton, M., Dewals, B., & Erpicum, S. (2021). Experimental and numerical study of the effect of model geometric distortion on laboratory modeling of urban flooding. Water Resources Research, 57(10), e2021WR029666. https://doi.org/10.1029/2021wr029666
Luo, H., Fytanidis, D. K., Schmidt, A. R., & Garcia, M. H. (2018). Comparative 1D and 3D numerical investigation of open-channel junction flows and energy losses. Advances in Water Resources, 117, 120–139. https://doi.org/10.1016/j.advwatres.2018.05.012
Luo, P., Luo, M., Li, F., Qi, X., Huo, A., Wang, Z., et al. (2022). Urban flood numerical simulation: Research, methods and future perspectives. Environmental Modelling and Software, 156, 105478. https://doi.org/10.1016/j.envsoft.2022.105478
Macchione, F., Costabile, P., Costanzo, C., & Lorenzo, G. D. (2019). Extracting quantitative data from non-conventional information for the hydraulic reconstruction of past urban flood events. A case study. Journal of Hydrology, 576, 443–465. https://doi.org/10.1016/j.jhydrol.2019.06.031
Martins, R., Rubinato, M., Kesserwani, G., Leandro, J., Djordjevic, S., & Shucksmith, J. D. (2018). On the characteristics of velocities fields in the vicinity of manhole inlet grates during flood events. Water Resources Research, 54(9), 6408–6422. https://doi.org/10.1029/2018wr022782
Mejía-Morales, M. A., Mignot, E., Paquier, A., & Proust, S. (2023). Laboratory investigation into the effect of the storage capacity of a city block on unsteady urban flood flows. Water Resources Research, 59(4), e2022WR032984. https://doi.org/10.1029/2022WR032984
Mejia-Morales, M. A., Mignot, E., Paquier, A., Sigaud, D., & Proust, S. (2021). Impact of the porosity of an urban block on the flood risk assessment: A laboratory experiment. Journal of Hydrology, 602, 126715–126715. https://doi.org/10.1016/j.jhydrol.2021.126715
Mignot, E., Bonakdari, H., Knothe, P., Kouyi, G. L., Bessette, A., Riviere, N., & Bertrand-Krajewski, J. L. (2012). Experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters. Water Science and Technology, 66(6), 1325–1332. https://doi.org/10.2166/wst.2012.319
Mignot, E., Camusson, L., & Riviere, N. (2020). Measuring the flow intrusion towards building areas during urban floods: Impact of the obstacles located in the streets and on the facade. Journal of Hydrology, 583, 124607–124607. https://doi.org/10.1016/j.jhydrol.2020.124607
Mignot, E., & Dewals, B. (2022). Hydraulic modelling of inland urban flooding: Recent advances. Journal of Hydrology, 609, 127763. https://doi.org/10.1016/j.jhydrol.2022.127763
Mignot, E., Paquier, A., & Haider, S. (2006). Modeling floods in a dense urban area using 2D shallow water equations. Journal of Hydrology, 327(1), 186–199. https://doi.org/10.1016/j.jhydrol.2005.11.026
Mignot, E., Zeng, C., Dominguez, G., Li, C. W., Rivière, N., & Bazin, P. H. (2013). Impact of topographic obstacles on the discharge distribution in open-channel bifurcations. Journal of Hydrology, 494, 10–19. https://doi.org/10.1016/j.jhydrol.2013.04.023
Molinari, D., Scorzini, A. R., Arrighi, C., Carisi, F., Castelli, F., Domeneghetti, A., et al. (2020). Are flood damage models converging to "reality''? Lessons learnt from a blind test. Natural Hazards and Earth System Sciences, 20(11), 2997–3017. 2997–3017-2997–3017. https://doi.org/10.5194/nhess-20-2997-2020
Momplot, A., Kouyi, G. L., Mignot, E., Rivière, N., & Bertrand-Krajewski, J.-L. (2017). Typology of the flow structures in dividing open channel flows. Journal of Hydraulic Research, 55(1), 63–71. https://doi.org/10.1080/00221686.2016.1212409
Paquier, A., Bazin, P.-H., & El Kadi Abderrezzak, K. (2020). Sensitivity of 2D hydrodynamic modelling of urban floods to the forcing inputs: Lessons from two field cases. Urban Water Journal, 17(5), 457–466. https://doi.org/10.1080/1573062x.2019.1669200
Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584, 124308–124308. https://doi.org/10.1016/j.jhydrol.2019.124308
Rosenzweig, B. R., Herreros Cantis, P., Kim, Y., Cohn, A., Grove, K., Brock, J., et al. (2021). The value of urban flood modeling. Earth’s Future, 9(1), e2020EF001739. https://doi.org/10.1029/2020EF001739
Rubinato, M., Lee, S., Martins, R., & Shucksmith, J. D. (2018). Surface to sewer flow exchange through circular inlets during urban flood conditions. Journal of Hydroinformatics, 20(3), 564–576. https://doi.org/10.2166/hydro.2018.127
Schindfessel, L., Creëlle, S., & De Mulder, T. (2015). Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water, 7(9), 4724–4751. 4724–4751-4724–4751. https://doi.org/10.3390/w7094724
Smith, G. P., Rahman, P. F., & Wasko, C. (2016). A comprehensive urban floodplain dataset for model benchmarking. International Journal of River Basin Management, 14(3), 345–356. https://doi.org/10.1080/15715124.2016.1193510
Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., & Soares-Frazão, S. (2007). Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 45(SPEC. ISS.), 37–44. https://doi.org/10.1080/00221686.2007.9521831
Torres, C., Borman, D., Matos, J., & Neeve, D. (2022). CFD modeling of scale effects on free-surface flow over a labyrinth weir and spillway. Journal of Hydraulic Engineering, 148(7), 04022011. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001989
Velickovic, M., Zech, Y., & Soares-Frazão, S. (2017). Steady-flow experiments in urban areas and anisotropic porosity model. Journal of Hydraulic Research, 55(1), 85–100. https://doi.org/10.1080/00221686.2016.1238013
Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method/H. K. Versteeg and W. Malalasekera. SERBIULA (sistema Librum 2.0).
Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on flow at a 90° open-channel junction. Journal of Hydraulic Engineering, 127(5), 340–350. https://doi.org/10.1061/(asce)0733-9429(2001)127:5(340)
Yuan, S., Tang, H., Xiao, Y., Qiu, X., & Xia, Y. (2018). Water flow and sediment transport at open-channel confluences: An experimental study. Journal of Hydraulic Research, 56(3), 333–350. https://doi.org/10.1080/00221686.2017.1354932
Zhang, Y., Chen, Z., Zheng, X., Chen, N., & Wang, Y. (2021). Extracting the location of flooding events in urban systems and analyzing the semantic risk using social sensing data. Journal of Hydrology, 603, 127053. https://doi.org/10.1016/j.jhydrol.2021.127053
Zhi, G., Liao, Z., Tian, W., & Wu, J. (2020). Urban flood risk assessment and analysis with a 3D visualization method coupling the PP-PSO algorithm and building data. Journal of Environmental Management, 268, 110521–110521. https://doi.org/10.1016/j.jenvman.2020.110521
Zhu, X., & Lipeme Kouyi, G. (2019). An analysis of LSPIV-based surface velocity measurement techniques for stormwater detention basin management. Water Resources Research, 55(2), 888–903. https://doi.org/10.1029/2018wr023813
Zhu, Z., Gou, L., Liu, S., & Peng, D. (2023). Effect of urban neighbourhood layout on the flood intrusion rate of residential buildings and associated risk for pedestrians. Sustainable Cities and Society, 92, 104485. https://doi.org/10.1016/j.scs.2023.104485