modafinil; solubility; active pharmaceutical ingredient
Abstract :
[en] The solubility of modafinil (MOD) form I, an antinarcoleptic drug, was measured at temperatures ranging from 278.15 to 333.15 K in ten neat solvents (acetone, acetonitrile, dimethylformamide, ethanol, ethyl acetate, methanol, methylethylketone, 1-propanol, 2-propanol, and water) and two binary solvent mixtures (acetone + water and methanol + water). The results employing the polythermal method demonstrate that the solubility increases with increasing temperature in the neat solvents and at constant composition in the binary solvent mixtures. Moreover, the MOD solubility decreases with an increasing mass fraction of water (antisolvent) in the binary solvent mixture methanol + water. In the binary solvent mixture acetone + water, the solubility exceeds its solubility in neat acetone and water, reaching a maximum at a water mass fraction of ∼20 wt %. Based on the calculated average relative deviation (ARD %), the experimental solubility data agree with the correlated data using the modified Apelblat and λh equations. Additionally, powder X-ray diffraction confirms that the recrystallized solid in the neat and binary solvent mixtures was the commercial MOD form I, except for 2-propanol. Thus, the presented solubility data provide a pathway to engineer crystallization processes for MOD toward integrated manufacturing from flow synthesis to crystallization.
Research Center/Unit :
MolSys - Molecular Systems - ULiège Center for Integrated Technology and Organic Synthesis
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Chatterjie, N.; Stables, J. P.; Wang, H.; Alexander, G. J. Anti-Narcoleptic Agent Modafinil and Its Sulfone: A Novel Facile Synthesis and Potential Anti-Epileptic Activity. Neurochem. Res. 2004, 29, 1481- 1486, 10.1023/B:NERE.0000029559.20581.1a
Kumar, R. Approved and Investigational Uses of Modafinil: An Evidence-Based Review. Drugs 2008, 68, 1803- 1839, 10.2165/00003495-200868130-00003
DeBattista, C.; Lembke, A.; Solvason, H. B.; Ghebremichael, R.; Poirier, J. A Prospective Trial of Modafinil as an Adjunctive Treatment of Major Depression. J. Clin. Psychopharmacol. 2004, 24, 87- 90, 10.1097/01.jcp.0000104910.75206.b9
Pharmaceuticals, T. Provigil. 1998.
Shuman, T.; Cai, D. J.; Sage, J. R.; Anagnostaras, S. G. Interactions between Modafinil and Cocaine during the Induction of Conditioned Place Preference and Locomotor Sensitization in Mice: Implications for Addiction. Behav. Brain Res. 2012, 235, 105- 112, 10.1016/j.bbr.2012.07.039
US Modafinil in Narcolepsy Multicenter Study Group Randomized Trial of Modafinil for the Treatment of Pathological Somnolence in Narcolepsy. US Modafinil in Narcolepsy Multicenter Study Group. Ann. Neurol. 1998, 43, 88- 97, 10.1002/ana.410430115
Kredlow, M. A.; Keshishian, A.; Oppenheimer, S.; Otto, M. W. The Efficacy of Modafinil as a Cognitive Enhancer: A Systematic Review and Meta-Analysis. J. Clin. Psychopharmacol. 2019, 39, 455- 461, 10.1097/JCP.0000000000001085
NASA . Emergency Medical Procedures Manual for the International Space Station (ISS) [Partial]; NASA, 2016.
Lafon, L. Acetamide Derivatives. U.S. Patent 4,177,290 A, 1978.
Held, F. E.; Stingl, K. A.; Tsogoeva, S. B. Synthesis of (R)-Modafinil via Organocatalyzed and Non-Heme Iron-Catalyzed Sulfoxidation Using H2O2 as an Environmentally Benign Oxidant. Symmetry 2017, 9, 88, 10.3390/sym9060088
Castaldi, G.; Lucchini, V.; Tarquini, A. Process for the Preparation of Modafinil. US Patent, 20,050,154,063 A1, 2006.
De Risi, C.; Ferraro, L.; Pollini, G. P.; Tanganelli, S.; Valente, F.; Veronese, A. C. Efficient Synthesis and Biological Evaluation of Two Modafinil Analogues. Bioorg. Med. Chem. 2008, 16, 9904- 9910, 10.1016/j.bmc.2008.10.027
Silva-Brenes, D. V.; Emmanuel, N.; López Mejías, V.; Duconge, J.; Vlaar, C.; Stelzer, T.; Monbaliu, J. C. M. Out-Smarting Smart Drug Modafinil through Flow Chemistry. Green Chem. 2022, 24, 2094- 2103, 10.1039/D1GC04666G
Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J. C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R. On-Demand Continuous-Flow Production of Pharmaceuticals in a Compact, Reconfigurable System. Science 2016, 352, 61- 67, 10.1126/science.aaf1337
Monbaliu, J. C. M.; Stelzer, T.; Revalor, E.; Weeranoppanant, N.; Jensen, K. F.; Myerson, A. S. Compact and Integrated Approach for Advanced End-to-End Production, Purification, and Aqueous Formulation of Lidocaine Hydrochloride. Org. Process Res. Dev. 2016, 20, 1347- 1353, 10.1021/acs.oprd.6b00165
Zhang, P.; Weeranoppanant, N.; Thomas, D. A.; Tahara, K.; Stelzer, T.; Russell, M. G.; O’Mahony, M.; Myerson, A. S.; Lin, H.; Kelly, L. P.; Jensen, K. F.; Jamison, T. F.; Dai, C.; Cui, Y.; Briggs, N.; Beingessner, R. L.; Adamo, A. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing. Chem. - Eur. J. 2018, 24, 2776- 2784, 10.1002/chem.201706004
Agrawal, S.; Monbaliu, J. C. M.; Vlaar, C.; Duconge, J.; López-Mejías, V.; Stelzer, T. Continuous Crystallization Process Development of Modafinil: A Step Towards Achieving Integrated Continuous Manufacturing. Annual Meeting of the American Institute of Chemical Engineering; AIChE: Phoenix, AZ, 2022.
Stelzer, T.; Lakerveld, R.; Myerson, A. S. Process Intensification in Continuous Crystallization. The Handbook of Continuous Crystallization; Yazdanpanah, N., Nagy, Z., Eds.; Royal Society of Chemistry: Cambridge, 2020, pp 266- 320.
O’Mahony, M.; Ferguson, S.; Stelzer, T.; Myerson, A. S. Separation and Purification in the Continuous Synthesis of Fine Chemicals and Pharmaceuticals. Flow Chemistry in Organic Synthesis; Jamison, T. F., Koch, G., Eds.; Georg Thieme Verlag KG, 2018.
Mahieux, J.; Sanselme, M.; Coquerel, G. Access to Several Polymorphic Forms of (±)-Modafinil by Using Various Solvation-Desolvation Processes. Cryst. Growth Des. 2016, 16, 396- 405, 10.1021/acs.cgd.5b01384
Mahieux, J.; Sanselme, M.; Coquerel, G. Access to Single Crystals of (±)-Form IV of Modafinil by Crystallization in Gels. Comparisons between (±)-Forms I, III, and IV and (−)-Form I. Cryst. Growth Des. 2013, 13, 908- 917, 10.1021/cg301630d
Stokes, S. P.; Seaton, C. C.; Eccles, K. S.; Maguire, A. R.; Lawrence, S. E. Insight into the Mechanism of Formation of Channel Hydrates via Templating. Cryst. Growth Des. 2014, 14, 1158- 1166, 10.1021/cg401660h
Thimmasetty, J.; Ghosh, T.; Nagar, S. N.; Kamath, S.; Seetharaman, S.; Mohamed, A. K. Enhanced Solubility of Modafinil via Solubilization Techniques. J. Young Pharm. 2020, 12, 129- 134, 10.5530/jyp.2020.12.26
Thomson Health Care Inc . Physicians’ Desk Reference; Thomson PDR: Montvale, NJ, 2008, p 988.
National Institute of Standards and Technology . ThermoLit: NIST Literature Report Builder for Thermophysical and Thermochemical Property Measurements; National Institute of Standards and Technology, 2022.
Vázquez Marrero, V. R.; Piñero Berríos, C.; De Dios Rodríguez, L.; Stelzer, T.; López-Mejías, V. In the Context of Polymorphism: Accurate Measurement, and Validation of Solubility Data. Cryst. Growth Des. 2019, 19, 4101- 4108, 10.1021/acs.cgd.9b00529
Coquerel, G. Solubility of Chiral Species as Function of the Enantiomeric Excess. J. Pharm. Pharmacol. 2015, 67, 869- 878, 10.1111/jphp.12395
Jiménez Cruz, J. M.; Vlaar, C. P.; López-Mejías, V.; Stelzer, T. Solubility Measurements and Correlation of MBQ-167 in Neat and Binary Solvent Mixtures. J. Chem. Eng. Data 2021, 66, 832- 839, 10.1021/acs.jced.0c00908
George De La Rosa, M. V.; Santiago, R.; Malavé Romero, J.; Duconge, J.; Monbaliu, J. C.; López-Mejías, V.; Stelzer, T. Solubility Determination and Correlation of Warfarin Sodium 2-Propanol Solvate in Pure, Binary, and Ternary Solvent Mixtures. J. Chem. Eng. Data 2019, 64, 1399- 1413, 10.1021/acs.jced.8b00977
Sun, F.; Kang, H.; Zhang, K.; Liu, B.; Zhang, B. Solubility of Chlocyphos in Different Solvents. Fluid Phase Equilib. 2012, 330, 12- 16, 10.1016/j.fluid.2012.06.010
Ceausu, A.; Lieberman, A.; Aronhime, J. Highly pure modafinil. U.S. Patent 8,048,222 B2, 2011.
FDA . International Council for Harmonisation. Guidance for Industry Q3C; US Health & Human Services Department- Food and Drug Adminsitration; FDA, 2017.
Myerson, A. S.; Erdemir, D.; Lee, A. Y. Handbook of Industrial Crystallization; Cambridge University Press, 2019.
Brittain, H. G. Polymorphism in Pharmaceutical Solids, 2nd ed.; Informa Healthcare, 2016; Vol. 192.
Apelblat, A.; Dov, M.; Wisniak, J.; Zabicky, J. The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K. J. Chem. Thermodyn. 1995, 27, 35- 41, 10.1006/jcht.1995.0004
Shakeel, F.; Shazly, G. A.; Haq, N. Solubility of Metoclopramide Hydrochloride in Six Green Solvents at (298.15 to 338.15) K. J. Chem. Eng. Data 2014, 59 ( 5), 1700- 1703, 10.1021/je500154k
Shakeel, F.; Haq, N.; Shazly, G. A.; Alanazi, F. K.; Alsarra, I. A. Solubility and Thermodynamic Analysis of Tenoxicam in Different Pure Solvents at Different Temperatures. J. Chem. Eng. Data 2015, 60, 2510- 2514, 10.1021/acs.jced.5b00382
Chen, E. C.; Mcguire, G.; Lee, H. Y. Solubility isotherm of the ferric chloride-magnesium chloride-hydrogen chloride-water system. J. Chem. Eng. Data 1970, 15, 448- 449, 10.1021/je60046a015
Zorrilla-Veloz, R. I.; Stelzer, T.; López-Mejías, V. Measurement and Correlation of the Solubility of 5-Fluorouracil in Pure and Binary Solvents. J. Chem. Eng. Data 2018, 63, 3809- 3817, 10.1021/acs.jced.8b00425
Reus, M. a.; van der Heijden, A. E. D. M.; ter Horst, J. H. Solubility Determination from Clear Points upon Solvent Addition. Org. Process Res. Dev. 2015, 19, 1004- 1011, 10.1021/acs.oprd.5b00156
Vellema, J.; Hunfeld, N. G. M.; Van Den Akker, H. E. A.; Ter Horst, J. H. Avoiding Crystallization of Lorazepam during Infusion. Eur. J. Pharm. Sci. 2011, 44, 621- 626, 10.1016/j.ejps.2011.10.010
Trupej, N.; Hrnčič, M. K.; Škerget, M.; Knez, Z. ̌. Solubility and Binary Diffusion Coefficient of Argon in Polyethylene Glycols of Different Molecular Weights. J. Supercrit. Fluids 2015, 103, 10- 17, 10.1016/j.supflu.2015.04.022
Di̇nç, C. Ö.; Ki̇barer, G.; Guner, A. Solubility Profiles of Poly(Ethylene Glycol)/Solvent Systems. II. Comparison of Thermodynamic Parameters from Viscosity Measurements. J. Appl. Polym. Sci. 2010, 117, 1100- 1119, 10.1002/app.31829
Ksia̧ẑczak, A.; Kosinski, J. J. Vapour Pressure of Binary, Three-Phase (S-L-V) Systems and Solubility. Fluid Phase Equilib. 1988, 44, 211- 236, 10.1016/0378-3812(88)80112-2
Smallwood, I. Handbook of Organic Solvent Properties; Elsevier: London, UK, 1996.
Hilfiker, R.; Blatter, F.; von Raumer, M. Relevance of Solid-State Properties for Pharmaceutical Products, Polymorphism: In the Pharmaceutical Industry; Wiley-VCH, 2006, Chapter 1, pp 1- 19.
Pascual, G. K.; Donnellan, P.; Glennon, B.; Kamaraju, V. K.; Jones, R. C. Experimental and Modeling Studies on the Solubility of 2-Chloro-N-(4-Methylphenyl)Propanamide (S1) in Binary Ethyl Acetate + Hexane, Toluene + Hexane, Acetone + Hexane, and Butanone + Hexane Solvent Mixtures Using Polythermal Method. J. Chem. Eng. Data 2017, 62, 3193- 3205, 10.1021/acs.jced.7b00288
Jin, S.; Cui, X.; Qi, Y.; Shen, Y.; Li, H. Measurement and Correlation of the Solubility of β-Cyclodextrin in Different Solutions at Different Temperatures and Thermodynamic Study of the Dissolution Process. Processes 2019, 7, 135, 10.3390/pr7030135
Wang, X.; Qin, Y.; Zhang, T.; Tang, W.; Ma, B.; Gong, J. Measurement and Correlation of Solubility of Azithromycin Monohydrate in Five Pure Solvents. J. Chem. Eng. Data 2014, 59, 784- 791, 10.1021/je400899e
Wei, T.; Wang, C.; Du, S.; Wu, S.; Li, J.; Gong, J. Measurement and Correlation of the Solubility of Penicillin V Potassium in Ethanol + Water and 1-Butyl Alcohol + Water Systems. J. Chem. Eng. Data 2015, 60, 112- 117, 10.1021/je5008422
Zhang, F.; Tang, Y.; Wang, L.; Xu, L.; Liu, G. Solubility Determination and Thermodynamic Models for 2-Methylnaphthalene in Different Solvents from T = (278.15 to 303.15) K. J. Chem. Eng. Data 2015, 60, 1699- 1705, 10.1021/je5010627
Guo, Y.; Yin, Q.; Hao, H.; Zhang, M.; Bao, Y.; Hou, B.; Chen, W.; Zhang, H.; Cong, W. Measurement and Correlation of Solubility and Dissolution Thermodynamic Properties of Furan-2-Carboxylic Acid in Pure and Binary Solvents. J. Chem. Eng. Data 2014, 59, 1326- 1333, 10.1021/je500012b
Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 1980, 84, 975- 979, 10.1021/j100446a008
Bernstein, J.; Davey, R. J.; Henck, J. O. Concomitant Polymorphs. Angew. Chem., Int. Ed. 1999, 38, 3440- 3461, 10.1002/(SICI)1521-3773(19991203)38:23<3440::AID-ANIE3440>3.0.CO;2-#
Rogers, L.; Briggs, N.; Achermann, R.; Adamo, A.; Azad, M.; Brancazio, D.; Capellades, G.; Hammersmith, G.; Hart, T.; Imbrogno, J. Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Org. Process Res. Dev. 2020, 24, 2183- 2196, 10.1021/acs.oprd.0c00208
Miyako, Y.; Zhao, Y.; Takeshima, K.; Kataoka, T.; Handa, T.; Pinal, R. Solubility of Hydrophobic Compounds in Water-Cosolvent Mixtures: Relation of Solubility With Water-Cosolvent Interactions. J. Pharm. Sci. 2010, 99, 293- 302, 10.1002/jps.21842
Abouelela, A. R.; Al Ghatta, A.; Verdía, P.; Shan Koo, M.; Lemus, J.; Hallett, J. P. Evaluating the Role of Water as a Cosolvent and an Antisolvent in [HSO4]-Based Protic Ionic Liquid Pretreatment. ACS Sustain. Chem. Eng. 2021, 9, 10524- 10536, 10.1021/acssuschemeng.1c02299
Pauchet, M.; Morelli, T.; Coste, S.; Malandain, J. J.; Coquerel, G. Crystallization of (±)-Modafinil in Gel: Access to Form I, Form III, and Twins. Cryst. Growth Des. 2006, 6, 1881- 1889, 10.1021/cg060203k
Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171- 179, 10.1107/S2052520616003954
Broquaire, M.; Coquerel, G.; Courvoisier, L.; Frydman, A.; Mallet, F. Modafinil Polymorphic Forms. AU Patent, AU 2003253128 A1, 2003.
Billiard, M.; Broughton, R. Modafinil: Its Discovery, the Early European and North American Experience in the Treatment of Narcolepsy and Idiopathic Hypersomnia, and Its Subsequent Use in Other Medical Conditions. Sleep Med. 2018, 49, 69- 72, 10.1016/j.sleep.2018.05.027
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.