[en] CRISPR-based DNA editing technologies enable rapid and accessible genome engineering of eukaryotic cells. However, the delivery of genetically encoded CRISPR components remains challenging and sustained Cas9 expression correlates with higher off-target activities, which can be reduced via Cas9-protein delivery. Here we demonstrate that baculovirus, alongside its DNA cargo, can be used to package and deliver proteins to human cells. Using protein-loaded baculovirus (pBV), we demonstrate delivery of Cas9 or base editors proteins, leading to efficient genome and base editing in human cells. By implementing a reversible, chemically inducible heterodimerization system, we show that protein cargoes can selectively and more efficiently be loaded into pBVs (spBVs). Using spBVs we achieved high levels of multiplexed genome editing in a panel of human cell lines. Importantly, spBVs maintain high editing efficiencies in absence of detectable off-targets events. Finally, by exploiting Cas9 protein and template DNA co-delivery, we demonstrate up to 5% site-specific targeted integration of a 1.8 kb heterologous DNA payload using a single spBV in a panel of human cell lines. In summary, we demonstrate that spBVs represent a versatile, efficient and potentially safer alternative for CRISPR applications requiring co-delivery of DNA and protein cargoes.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Capin, Julien ✱; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Harrison, Alexandra ✱; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Raele, Renata A; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Yadav, Sathish K N; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Baiwir, Dominique ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Mazzucchelli, Gabriel ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Satchwell, Timothy J; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Toye, Ashley M; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Schaffitzel, Christiane ; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
Berger, Imre ✱; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK ; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK ; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
Aulicino, Francesco ✱; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
✱ These authors have contributed equally to this work.
Language :
English
Title :
An engineered baculoviral protein and DNA co-delivery system for CRISPR-based mammalian genome editing.
ERC - European Research Council MRC - Medical Research Council University of Bristol Max Planck-Bristol Centre for Minimal Biology
Funding text :
European Research Council (ERC) Advanced Grant [DNADOCK, Project No. 834631]; GE Healthcare [Discovery Research Grant to I.B.]; Medical Research Council Grant [MR/V010506/1 to A.M.T. and T.J.S.]; BrisSynBio, a
BBSRC/EPSRC Research Centre for Synthetic Biology at the
University of Bristol [BB/L01386X/1 to I.B.]; EPSRC and
BBSRC Centre for Doctoral Training in Synthetic Biology
[EP/L016494/1 to J.C.]; Max Planck Centre for Minimal Biology. Funding for open access charge: University of Bristol. European Research Council (ERC) Advanced Grant [DNA- DOCK, Project No. 834631]; GE Healthcare [Discov- ery Research Grant to I.B.]; Medical Research Council Grant [MR / V010506 / 1 to A.M.T . and T .J.S.]; BrisSynBio, a BBSR C / EPSR C Research Centre for Synthetic Biology at the University of Bristol [BB / L01386X / 1 to I.B.]; EPSRC and BBSRC Centre for Doctoral Training in Synthetic Biology [EP / L016494 / 1 to J.C.]; Max Planck Centre for Minimal Bi- ology. Funding for open access charge: University of Bristol.
Jinek, M. , Chylinski, K. , Fonfara, I. , Hauer, M. , Doudna, J.A. and Charpentier,E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 337 , 816.
Cong, L. , Ran, F.A. , Cox, D. , Lin, S. , Barretto, R. , Habib, N. , Hsu, P.D. , Wu, X. , Jiang, W. , Marraffini, L.A. , et al. (2013) Multiplex genome engineering using CRISPR / Cas systems. Science , 339 , 819-823.
Komor, A.C. , Kim, Y.B. , Packer, M.S. , Zuris, J.A. and Liu, D.R. (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature , 533 , 420-424.
Gaudelli, N.M. , Komor, A.C. , Rees, H.A. , Packer, M.S. , Badran, A.H. , Bryson, D.I. and Liu, D.R. (2017) Programmable base editing of A T to G C in genomic DNA without DNA cleavage. Nature , 551 , 464-471.
Anzalone, A.V. , Gao, X.D. , Podracky, C.J. , Nelson, A.T. , Koblan, L.W. , Raguram, A. , Levy, J.M. , Mercer, J.A.M. and Liu, D.R. (2022) Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol., 40 , 731-740.
Anzalone, A.V. , Randolph, P.B. , Davis, J.R. , Sousa, A.A. , Koblan, L.W. , Levy, J.M. , Chen, P.J. , Wilson, C. , Newby, G.A. , Raguram, A. , et al. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature , 576 , 149-157.
Wang, D. , Zhang, F. and Gao, G. (2020) CRISPR -based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell , 181 , 136-150.
Dong, W. and Kantor, B. (2021) Lentiviral vectors for delivery of gene-editing systems based on CRISPR / Cas: current state and perspectives. Viruses , 13 , 1288.
Wang, Q. , Liu, J. , Janssen, J.M. , Tasca, F. , Mei, H. and Gon alves,M.A.F .V . (2021) Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res. , 49 , 11986-12001.
Fu, Y. , Foden, J.A. , Khayter, C. , Maeder, M.L. , Reyon, D. , Joung, J.K. and Sander,J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31 , 822-826.
Lin, Y. , Cradick, T.J. , Brown, M.T. , Deshmukh, H. , Ranjan, P. , Sarode, N. , Wile, B.M. , Vertino, P.M. , Stewart, F.J. and Bao, G. (2014) CRISPR / Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res., 42 , 7473-7485.
Pattanayak, V. , Lin, S. , Guilinger, J.P. , Ma, E. , Doudna, J.A. and Liu,D.R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31 , 839-843.
Doench, J.G. , Fusi, N. , Sullender, M. , Hegde, M. , Vaimberg, E.W. , Donovan, K.F. , Smith, I. , Tothova, Z. , Wilen, C. , Orchard, R. , et al. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol., 34 , 184-191.
Kleinstiver, B.P. , Pattanayak, V. , Prew, M.S. , Tsai, S.Q. , Nguyen, N.T. , Zheng, Z. and Joung, J.K. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature , 529 , 490-495.
Shen, B. , Zhang, W. , Zhang, J. , Zhou, J. , Wang, J. , Chen, L. , Wang, L. , Hodgkins, A. , Iyer, V. , Huang, X. , et al. (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods , 11 , 399-402.
Liu, M.-S. , Gong, S. , Yu, H.-H. , Jung, K. , Johnson, K.A. and Taylor,D.W. (2020) Engineered CRISPR / Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA. Nat. Commun., 11 , 3576-3576.
Guilinger, J.P. , Thompson, D.B. and Liu, D.R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 32 , 577-582.
Zhang, S. , Shen, J. , Li, D. and Cheng, Y. (2021) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR / Cas9 genome editing. Theranostics , 11 , 614-648.
Rasys, A.M. , Park, S. , Ball, R.E. , Alcala, A.J. , Lauderdale, J.D. and Menke, D.B. (2019) CRISPR -Cas9 gene editing in lizards through microinjection of unfertilized oocytes. Cell Rep. , 28 , 2288-2292.
Chaverra-Rodriguez, D. , Macias, V.M. , Hughes, G.L. , Pujhari, S. , Suzuki, Y. , Peterson, D.R. , Kim, D. , McKeand, S. and Rasgon, J.L. (2018) Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun., 9 , 3008-3008.
Lin, S. , Staahl, B.T. , Alla, R.K. and Doudna, J.A. (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR / Cas9 delivery. eLife , 3 , e04766-e04766.
Kim, S. , Kim, D. , Cho, S.W. , Kim, J. and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. , 24 , 1012-1019.
Nguyen, D.N. , Roth, T.L. , Li, P.J. , Chen, P.A. , Apathy, R. , Mamedov, M.R. , Vo, L.T. , Tobin, V.R. , Goodman, D. , Shifrut, E. , et al. (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol., 38 , 44-49.
Wei, T. , Cheng, Q. , Min, Y.-L. , Olson, E.N. and Siegwart, D.J. (2020) Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun., 11 , 3232-3232.
Lee, K. , Conboy, M. , Park, H.M. , Jiang, F. , Kim, H.J. , Dewitt, M.A. , Mackley, V.A. , Chang, K. , Rao, A. , Skinner, C. , et al. (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng , 1 , 889-901.
Banskota, S. , Raguram, A. , Suh, S. , Du, S.W. , Davis, J.R. , Choi, E.H. , Wang, X. , Nielsen, S.C. , Newby, G.A. , Randolph, P.B. , et al. (2022) Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell , 185 , 250-265.
Hamilton, J.R. , Tsuchida, C.A. , Nguyen, D.N. , Shy, B.R. , McGarrigle, E.R. , Sandoval Espinoza, C.R. , Carr, D. , Blaeschke, F. , Marson, A. and Doudna, J.A. (2021) Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep., 35 , 109207-109207.
Mangeot, P.E. , Risson, V. , Fusil, F. , Marnef, A. , Laurent, E. , Blin, J. , Mournetas, V. , Massourid s, E. , Sohier, T.J.M. , Corbin, A. , et al. (2019) Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun., 10 , 45-45.
An, M. , Raguram, A. , Du, S.W. , Banskota, S. , Davis, J.R. , Newby, G.A. , Chen, P.Z. , Palczewski, K. and Liu, D.R. (2024) Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol., https:// doi.org/ 10.1038/ s41587- 023- 02078- y .
Gee, P. , Lung, M.S.Y. , Okuzaki, Y. , Sasakawa, N. , Iguchi, T. , Makita, Y. , Hozumi, H. , Miura, Y. , Yang, L.F. , Iwasaki, M. , et al. (2020) Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun., 11 , 1334-1334.
Montagna, C. , Petris, G. , Casini, A. , Maule, G. , Franceschini, G.M. , Zanella, I. , Conti, L. , Arnoldi, F. , Burrone, O.R. , Zentilin, L. , et al. (2018) VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol. Ther. Nucleic Acids , 12 , 453-462.
Campbell, L.A. , Coke, L.M. , Richie, C.T. , Fortuno, L.V. , Park, A.Y. and Harvey,B.K. (2019) Gesicle-mediated delivery of CRISPR / Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol. Ther., 27 , 151-163.
Aulicino, F. , Capin, J. and Berger, I. (2020) Synthetic virus-derived nanosystems (SVNs) for delivery and precision docking of large multifunctional DNA circuitry in mammalian cells. Pharmaceutics , 12 , 759.
Aulicino, F. , Pelosse, M. , Toelzer, C. , Capin, J. , Ilegems, E. , Meysami, P. , Rollarson, R. , Berggren, P.-O. , Dillingham, M.S. , Schaffitzel, C. , et al. (2022) Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res. , 50 , 7783-7799.
V ia, S.T. , zu Altenschildesche, G.M. and Doerfler, W. (1983) Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology , 125 , 107-117.
Gorda, B. , Toelzer, C. , Aulicino, F. and Berger, I. (2021) In: O'Dell, W.B. and Kelman, Z. (eds.) Methods Enzymol . Academic Press, Vol. 660 , pp. 129-154.
Fitzgerald, D.J. , Berger, P. , Schaffitzel, C. , Yamada, K. , Richmond, T.J. and Berger,I. (2006) Protein complex expression by using multigene baculoviral vectors. Nat. Methods , 3 , 1021-1032.
Berger, I. , Fitzgerald, D.J. and Richmond, T.J. (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol., 22 , 1583-1587.
Mansouri, M. , Bellon-Echeverria, I. , Rizk, A. , Ehsaei, Z. , Cianciolo Cosentino, C. , Silva, C.S. , Xie, Y. , Boyce, F.M. , Davis, M.W. , Neuhauss, S.C.F. , et al. (2016) Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat. Commun., 7 , 11529.
Barsoum, J. , Brown, R. , McKee, M. and Boyce, F.M. (1997) Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther., 8 , 2011-2018.
Sung, L.-Y. , Chen, C.-L. , Lin, S.-Y. , Li, K.-C. , Yeh, C.-L. , Chen, G.-Y. , Lin, C.-Y. and Hu, Y.-C. (2014) Efficient gene delivery into cell lines and stem cells using baculovirus. Nat. Protoc., 9 , 1882-1899.
Sari, D. , Gupta, K. , Thimiri Govinda Raj, D.B. , Aubert, A. , Drncov , P. , Garzoni, F. , Fitzgerald, D. and Berger, I. (2016) The MultiBac baculovirus / insect cell expression vector system for producing complex protein biologics. Adv. Exp. Med. Biol., 896 , 199-215.
Mansouri, M. , Bellon-Echeverria, I. , Rizk, A. , Ehsaei, Z. , Cianciolo Cosentino, C. , Silva, C.S. , Xie, Y. , Boyce, F.M. , Davis, M.W. , Neuhauss, S.C. , et al. (2016) Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat. Commun., 7 , 11529.
Becke, C. , Haffke, M. and Berger, I. (2012) In: Cre-ACEMBLER Software User Manual .
Nie, Y. , Chaillet, M. , Becke, C. , Haffke, M. , Pelosse, M. , Fitzgerald, D. , Collinson, I. , Schaffitzel, C. and Berger, I. (2016) A CEMBL tool-kits for high-throughput multigene delivery and expression in prokaryotic and eukaryotic hosts. Adv. Exp. Med. Biol., 896 , 27-42.
Conant, D. , Hsiau, T. , Rossi, N. , Oki, J. , Maures, T. , Waite, K. , Yang, J. , Joshi, S. , Kelso, R. , Holden, K. , et al. (2022) Inference of CRISPR edits from Sanger trace data. The CRISPR Journal , 5 , 123-130.
Kearns, N.A. , Genga, R.M.J. , Enuameh, M.S. , Garber, M. , Wolfe, S.A. and Maehr,R. (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development , 141 , 219-223.
Wang, Q. , Bosch, B.J. , Vlak, J.M. , van Oers, M.M. , Rottier, P.J. and van Lent,J.W.M. (2016) Budded baculovirus particle structure revisited. J. Invertebr. Pathol., 134 , 15-22.
Carbonell, L.F. and Miller, L.K. (1987) Baculovirus interaction with nontarget organisms: a virus-borne reporter gene is not expressed in two mammalian cell lines. Appl. Environ. Microb., 53 , 1412-1417.
Wang, R. , Deng, F. , Hou, D. , Zhao, Y. , Guo, L. , Wang, H. and Hu, Z. (2010) Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J. V irol. , 84 , 7233-7242.
Jia, X. , Gao, Y. , Huang, Y. , Sun, L. , Li, S. , Li, H. , Zhang, X. , Li, Y. , He, J. , Wu, W. , et al. (2023) Architecture of the baculovirus nucleocapsid revealed by cryo-EM. Nat. Commun., 14 , 7481.
Nasimuzzaman, M. , van der Loo,J.C.M. and Malik,P. (2018) Production and purification of baculovirus for gene therapy application. J. Vis. Exp., https:// doi.org/ 10.3791/ 57019 .
Volkman,L.E. (1986) In: The Molecular Biology of Baculoviruses . Springer Berlin Heidelberg, pp. 103-118.
Silva, J.C. , Gorenstein, M.V. , Li, G.-Z. , V issers, J.P.C. and Geromanos,S.J. (2006) Absolute quantification of proteins by LCMSE. Mol. Cell. Proteomics , 5 , 144-156.
Zhou, C. , Sun, Y. , Yan, R. , Liu, Y. , Zuo, E. , Gu, C. , Han, L. , Wei, Y. , Hu, X. , Zeng, R. , et al. (2019) Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature , 571 , 275-278.
McGrath, E. , Shin, H. , Zhang, L. , Phue, J.-N. , Wu, W .W . , Shen, R.-F. , Jang,Y .-Y ., Revollo,J. and Ye,Z. (2019) Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun., 10 , 5353-5353.
Gr newald, J. , Zhou, R. , Garcia, S.P. , Iyer, S. , Lareau, C.A. , Aryee, M.J. and Joung, J.K. (2019) Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature , 569 , 433-437.
Kuscu, C. , Parlak, M. , Tufan, T. , Yang, J. , Szlachta, K. , Wei, X. , Mammadov, R. and Adli, M. (2017) CRISPR -ST OP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods , 14 , 710-712.
Kluesner, M.G. , Nedveck, D.A. , Lahr, W.S. , Garbe, J.R. , Abrahante, J.E. , Webber, B.R. and Moriarity, B.S. (2018) EditR: a method to quantify base editing from Sanger sequencing. CRISPR J., 1 , 239-250.
Lampe, G.D. , King, R.T. , Halpin-Healy, T.S. , Klompe, S.E. , Hogan, M.I. , Vo, P.L.H. , Tang, S. , Chavez, A. and Sternberg, S.H. (2023) Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol., 42 , 87-98.
Liang, F.-S. , Ho, W.Q. and Crabtree, G.R. (2011) Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal , 4 , rs2.
Indikova, I. and Indik, S. (2020) Highly efficient 'hit-and-run' genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts. Nucleic Acids Res., 48 , 8178-8187.
Hoffmann, M. , Wu, Y.J. , Gerber, M. , Berger-Rentsch, M. , Heimrich, B. , Schwemmle, M. and Zimmer, G. (2010) Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J. Gen. V irol. , 91 , 2782-2793.
Suzuki, K. , Tsunekawa, Y. , Hernandez-Benitez, R. , Wu, J. , Zhu, J. , Kim, E.J. , Hatanaka, F. , Yamamoto, M. , Araoka, T. , Li, Z. , et al. (2016) In vivo genome editing via CRISPR / Cas9 mediated homology-independent targeted integration. Nature , 540 , 144.
Hanlon, K.S. , Kleinstiver, B.P. , Garcia, S.P. , Zaborowski, M.P. , Volak, A. , Spirig, S.E. , Muller, A. , Sousa, A.A. , Tsai, S.Q. , Bengtsson, N.E. , et al. (2019) High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun., 10 , 4439.
Lanza, D.G. , Gaspero, A. , Lorenzo, I. , Liao, L. , Zheng, P. , Wang, Y. , Deng, Y. , Cheng, C. , Zhang, C. , Seavitt, J.R. , et al. (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol. , 16 , 69.
Segel, M. , Lash, B. , Song, J. , Ladha, A. , Liu, C.C. , Jin, X. , Mekhedov, S.L. , Macrae, R.K. , Koonin, E.V. and Zhang, F. (2021) Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science , 373 , 882-889.
Kreitz, J. , Friedrich, M.J. , Guru, A. , Lash, B. , Saito, M. , Macrae, R.K. and Zhang,F. (2023) Programmable protein delivery with a bacterial contractile injection system. Nature , 616 , 357-364.
Amalfi, S. , Plastine, M.D.P. , L pez, M.G. , Gravisaco, M.J. , Taboga, O. and Alfonso,V. (2023) P26 enhances baculovirus gene delivery by modulating the mammalian antiviral response. Appl. Microbiol. Biotechnol., 107 , 6277-6286.
Kost, T.A. , Condreay, J.P. and Jarvis, D.L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol., 23 , 567-575.
Hu, Y.C. , Tsai, C.T. , Chang, Y.J. and Huang, J.H. (2003) Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog , 19 , 373-379.
Wang, X. , Y in, J. , Huang, X. and Zhong, J. (2010) DNA methyltransferase inhibitors increase baculovirus-mediated gene expression in mammalian cells when applied before infection. Anal. Biochem., 396 , 322-324.
Wang, C.-H. , Naik, N.G. , Liao, L.-L. , Wei, S.-C. and Chao, Y.-C. (2017) Global screening of antiviral genes that suppress baculovirus transgene expression in mammalian cells. Mol. Ther. Methods Clin. Dev., 6 , 194-206.
Chen, P.J. , Hussmann, J.A. , Yan, J. , Knipping, F. , Ravisankar, P. , Chen,P .-F ., Chen,C., Nelson,J.W., Newby,G.A., Sahin,M., et al. (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell , 184 , 5635-5652.
Yarnall, M.T.N. , Ioannidi, E.I. , Schmitt-Ulms, C. , Krajeski, R.N. , Lim, J. , V illiger, L. , Zhou, W. , Jiang, K. , Garushyants, S.K. , Roberts, N. , et al. (2023) Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol., 41 , 500-512.