climate change; dispersal; dispersal syndrome; gut microbiome; habitat connectivity; host–microbiome interactions; Animals; Biodiversity; Lizards/physiology; Lizards/microbiology; Gastrointestinal Microbiome; Ecosystem; Climate Change; Lizards; Immunology and Microbiology (all); Biochemistry, Genetics and Molecular Biology (all); Environmental Science (all); Agricultural and Biological Sciences (all)
Abstract :
[en] Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Fromm, Emma ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Zinger, Lucie ; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France ; Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090, Belém, Pará, Brazil
Pellerin, Félix ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Di Gesu, Lucie; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
Jacob, Staffan ; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
Winandy, Laurane ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Aguilée, Robin ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Parthuisot, Nathalie; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Iribar, Amaia ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
White, Joël ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France ; École Nationale Supérieure de Formation de l'Enseignement Agricole, 2 Route de Narbonne, 31320 Castanet-Tolosan, France
Bestion, Elvire ; Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
Cote, Julien ; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
Language :
English
Title :
Warming effects on lizard gut microbiome depend on habitat connectivity.
Publication date :
30 April 2024
Journal title :
Proceedings of the Royal Society. Biological Sciences
Fyssen Foundation ERC - European Research Council ANR - Agence Nationale de la Recherche
Funding text :
This work was supported by the French Laboratory of Excellence project ‘TULIP’ (grant nos ANR-10-LABX-41 and ANR-11-IDEX-0002-02) and by an ‘Investissements d’avenir’ program from the Agence Nationale de la Recherche (grant no. ANR-11-INBS-0001AnaEE Services). This work is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 817779 to J.Co.). LW was supported by the Fyssen Foundation Post-Doctoral Fellowship. LZ is also indebted to Markus Gastauer and to the Fundação de Ciência, Tecnologia, Inovação e Desenvolvimento Sustentável GUAMÁ, from whom she benefited from the grant Bolsa Estímulo à Inovação (BEI) no 094-2023.
Barnosky AD et al. 2011 Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. (doi:10.1038/nature09678)
Suggitt AJ et al. 2018 Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717. (doi:10.1038/s41558-018-0231-9)
Merilä J, Hendry AP. 2014 Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl 7, 1–14. (doi:10.1111/eva.12137)
Kelly M. 2019 Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Phil. Trans. R. Soc. B 374, 20180176. (doi:10.1098/rstb. 2018.0176)
Massot M, Clobert J, Ferrière R. 2008 Climate warming, dispersal inhibition and extinction risk: climate warming and dispersal inhibition. Glob. Change Biol. 14, 461–469. (doi:10. 1111/j.1365-2486.2007.01514.x)
Crispo E. 2008 Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469. (doi:10.1111/j.1420-9101.2008.01592.x)
Cote J, Bestion E, Jacob S, Travis J, Legrand D, Baguette M. 2017 Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73. (doi:10.1111/ecog.02538)
Fahrig L. 2007 Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015. (doi:10.1111/j.1365-2435.2007.01326.x)
Heller NE, Zavaleta ES. 2009 Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 142, 14–32. (doi:10.1016/j.biocon. 2008.10.006)
Lavergne S, Mouquet N, Thuiller W, Ronce O. 2010 Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350. (doi:10.1146/annurev-ecolsys-102209-144628)
Legrand D, Cote J, Fronhofer EA, Holt RD, Ronce O, Schtickzelle N, Travis JM, Clobert J. 2017 Eco-evolutionary dynamics in fragmented landscapes. Ecography 40, 9–25. (doi:10. 1111/ecog.02537)
Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC. 2008 Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. (doi:10.1126/science.1157174)
Massot M, Legendre S, Fédérici P, Clobert J. 2017 Climate warming: a loss of variation in populations can accompany reproductive shifts. Ecol. Lett. 20, 1140–1147. (doi:10.1111/ ele.12811)
Dillon ME, Wang G, Huey RB. 2010 Global metabolic impacts of recent climate warming. Nature 467, 704–706. (doi:10.1038/nature09407)
Sheridan JA, Bickford D. 2011 Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406. (doi:10.1038/nclimate1259)
Pellerin F, Bestion E, Winandy L, Di Gesu L, Richard M, Aguilée R, Cote J. 2022 Connectivity among thermal habitats buffers the effects of warm climate on life-history traits and population dynamics. J. Anim. Ecol. 91, 1365–2656. (doi:10.1111/1365-2656.13814)
Tuff KT, Tuff T, Davies KF. 2016 A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19, 361–374. (doi:10.1111/ele.12579)
Latimer CE, Cooper SJ, Karasov WH, Zuckerberg B. 2018 Does habitat fragmentation promote climate-resilient phenotypes? Oikos 127, 1069–1080. (doi:10.1111/oik.05111)
Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP. 2016 Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699. (doi:10.1016/j.tree.2016.06.008)
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. 2017 Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos 126, 508–531. (doi:10.1111/oik. 03900)
Hunter P. 2018 The revival of the extended phenotype: after more than 30 years, Dawkins’ extended phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep. 19, e46477. (doi:10.15252/embr.201846477)
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. 2021 The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141. (doi:10.1038/s41467-021-25315-x)
Kolodny O, Schulenburg H. 2020 Microbiome-mediated plasticity directs host evolution along several distinct time scales. Phil. Trans. R. Soc. B 375, 20190589. (doi:10.1098/rstb. 2019.0589)
Baldassarre L, Ying H, Reitzel AM, Franzenburg S, Fraune S. 2022 Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nat. Commun. 13, 3804. (doi:10.1038/s41467-022-31350-z)
Fontaine SS, Mineo PM, Kohl KD. 2022 Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat. Ecol. Evol. 6, 405–417. (doi:10.1038/s41559-022-01686-2)
Fontaine SS, Kohl KD. 2023 Ectotherm heat tolerance and the microbiome: current understanding, future directions and potential applications. J. Exp. Biol. 226, jeb245761. (doi:10.1242/jeb.245761)
Reese AT, Dunn RR. 2018 Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, 10–128. (doi:10.1128/mBio.01294-18)
Vellend M. 2010 Conceptual synthesis in community ecology. Q Rev. Biol. 85, 183–206. (doi:10.1086/652373)
Kohl KD. 2020 Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Phil. Trans. R. Soc. B 375, 20190251. (doi:10.1098/rstb.2019.0251)
Sepulveda J, Moeller AH. 2020 The effects of temperature on animal gut microbiomes. Front. Microbiol. 11, 384. (doi:10.3389/fmicb.2020.00384)
Bestion E, Jacob S, Zinger L, Di Gesu L, Richard M, White J, Cote J. 2017 Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161. (doi:10.1038/s41559-017-0161)
Fontaine SS, Novarro AJ, Kohl KD. 2018 Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, jeb187559. (doi:10.1242/jeb.187559)
Rosenberg E, Zilber-Rosenberg I. 2018 The hologenome concept of evolution after 10 years. Microbiome 6, 78. (doi:10.1186/s40168-018-0457-9)
Moeller AH, Sanders JG. 2020 Roles of the gut microbiota in the adaptive evolution of mammalian species. Phil. Trans. R. Soc. B 375, 20190597. (doi:10.1098/rstb.2019.0597)
Custer GF, Bresciani L, Dini-Andreote F. 2022 Ecological and evolutionary implications of microbial dispersal. Front Microbiol 13, 855859. (doi:10.3389/fmicb.2022.855859)
Weinhold A. 2022 Bowel movement: integrating host mobility and microbial transmission across host taxa. Front Microbiol 13, 826364. (doi:10.3389/fmicb.2022.826364)
Miller ET, Svanbäck R, Bohannan BJM. 2018 Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935. (doi:10.1016/j.tree.2018.09.002)
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Li G, Roberts NJ, Jiang G. 2022 Global warming responses of gut microbiota in moose (Alces alces) populations with different dispersal patterns. Journal of Zoology 318, jzo.12998. (doi:10.1111/jzo.12998)
Kohl KD, Yahn J. 2016 Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565. (doi:10.1111/1462-2920.13255)
Mony C, Uroy L, Khalfallah F, Haddad N, Vandenkoornhuyse P. 2022 Landscape connectivity for the invisibles. Ecography 2022, e06041. (doi:10.1111/ecog.06041)
Intergovernmental Panel on Climate Change. 2021 Climate change 2021: the physical science basis. Contribution of Working Gooup I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Le Galliard JF, Marquis O, Massot M. 2010 Cohort variation, climate effects and population dynamics in a short-lived lizard: cohort effects in a short-lived lizard. J. Anim. Ecol. 79, 1296–1307. (doi:10.1111/j.1365-2656.2010.01732.x)
Bestion E, Clobert J, Cote J. 2015 Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233. (doi:10.1111/ele.12502)
Bestion E, Teyssier A, Richard M, Clobert J, Cote J. 2015 Live fast, fie young: experimental evidence of population extinction risk due to climate change. PLoS Biol. 13, e1002281. (doi:10.1371/journal.pbio.1002281)
Bestion E et al. 2019 Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness. Proc R Soc B 286, 20192227. (doi:10.1098/rspb. 2019.2227)
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. 2019 Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448. (doi:10.1098/rspb.2018.2448)
Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. 2013 Robust estimation of microbial diversity in theory and in practice. ISME J. 7, 1092–1101. (doi:10.1038/ismej. 2013.10)
Calderón-Sanou I, Münkemüller T, Boyer F, Zinger L, Thuiller W. 2020 From environmental DNA sequences to ecological conclusions: how strong is the influence of methodological choices? J. Biogeogr. 47, 193–206. (doi:10.1111/jbi.13681)
Bestion E, San-Jose LM, Di Gesu L, Richard M, Sinervo B, Côte J, Calvez O, Guillaume O, Cote J. 2023 Plastic responses to warmer climates: a semi-natural experiment on lizard populations. Evolution 77, 1634–1646. (doi:10.1093/evolut/qpad070)
Williams CE et al. 2022 Sustained drought, but not short-term warming, alters the gut microbiomes of wild Anolis lizards. Appl. Environ. Microbiol. 88, e00530-22. (doi:10.1128/ aem.00530-22)
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012 Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230. (doi:10.1038/ nature11550)
Belkaid Y, Hand TW. 2014 Role of the microbiota in immunity and inflammation. Cell 157, 121–141. (doi:10.1016/j.cell.2014.03.011)
Rosenfeld JS. 2002 Functional redundancy in ecology and conservation. Oikos 98, 156–162. (doi:10.1034/j.1600-0706.2002.980116.x)
Zhang Z, Lu Y, Wei G, Jiao S. 2022 Rare species-driven diversity–ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio 13, e00449-22. (doi:10.1128/mbio.00449-22)
Sieber M et al. 2019 Neutrality in the metaorganism. PLoS Biol. 17, e3000298. (doi:10.1371/journal.pbio.3000298)
Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012 Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664. (doi:10.1038/ ismej.2012.22)
Storch D, Okie JG. 2019 The carrying capacity for species richness. Global Ecol. Biogeogr. 28, 1519–1532. (doi:10.1111/geb.12987)
Nearing JT et al. 2022 Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342. (doi:10.1038/s41467-022-28034-z)
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008 Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788. (doi:10.1038/ nrmicro1978)
Huus KE, Ley RE. 2021 Blowing hot and cold: body temperature and the microbiome. mSystems 6, e00707-21. (doi:10.1128/mSystems.00707-21)
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. 2020 The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573. (doi:10.3390/ microorganisms8040573)
Liao XD, Ma G, Cai J, Fu Y, Yan XY, Wei XB, Zhang RJ. 2015 Effects of Clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poult. Sci. 94, 662–667. (doi:10.3382/ps/pev038)
Zheng A et al. 2016 Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genom. 17, 89. (doi:10.1186/s12864-016-2371-5)
Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, Amieva MR, Huang KC, Sonnenburg JL. 2015 Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488. (doi:10.1016/j.chom.2015.09.002)
Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. 2012 High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7, e47713. (doi:10.1371/journal.pone.0047713)
Liu W, Yang J, Meng Y, Wu D, Cui L, Li T. 2022 The divergent effects of moderate climate warming on the gut microbiota and energetic state of cold-climate lizards from open and semi-closed microhabitats. Front. Microbiol. 13, 1050750. (doi:10.3389/fmicb.2022.1050750)
Clobert J, Le Galliard J-F, Cote J, Meylan S, Massot M. 2009 Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. (doi:10.1111/j.1461-0248.2008.01267.x)
Edelaar P, Siepielski AM, Clobert J. 2008 Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62, 2462–2472. (doi:10. 1111/j.1558-5646.2008.00459.x)
Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, Taylor CM, Welsh DA, Berthoud HR. 2015 Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615. (doi:10.1016/j.biopsych.2014.07.012)
Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. 2012 Animal behavior and the microbiome. Science 338, 198–199. (doi:10.1126/science.1227412)
Schretter CE. 2020 Links between the gut microbiota, metabolism, and host behavior. Gut Microbes 11, 245–248. (doi:10.1080/19490976.2019.1643674)
Mouquet N, Loreau M. 2003 Community patterns in source-sink metacommunities. Am. Nat. 162, 544–557. (doi:10.1086/378857)
Leibold MA et al. 2004 The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. (doi:10.1111/j.1461-0248.2004.00608.x)
Evans S, Martiny JBH, Allison SD. 2017 Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 11, 176–185. (doi:10.1038/ismej.2016.96)
Münger E, Montiel-Castro AJ, Langhans W, Pacheco-López G. 2018 Reciprocal interactions between gut microbiota and host social behavior. Front. Integr. Neurosci. 12, 21. (doi:10. 3389/fnint.2018.00021)
Soriano EL, Ramírez DT, Araujo DR, Gómez-Gil B, Castro LI, Sánchez CG. 2018 Effect of temperature and dietary lipid proportion on gut microbiota in yellowtail kingfish Seriola lalandi juveniles. Aquaculture 497, 269–277. (doi:10.1016/j.aquaculture.2018.07.065)
Legrand D et al. 2012 The Metatron: an experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat. Methods 9, 828–833. (doi:10.1038/nmeth. 2104)
Clobert J, Massot M, Lecomte J, Sorci G, de Fraipont M, Barbault R. 1994 Determinants of dispersal behavior: the common lizard as a case study. In Lizard ecology (eds LJ Vitt, ER Pianka), pp. 183–206. Princeton, NJ: Princeton University Press.
Colston TJ, Noonan BP, Jackson CR. 2015 Phylogenetic analysis of bacterial communities in different regions of the gastrointestinal tract of agkistrodon piscivorus, the Cottonmouth Snake. PLoS ONE 10, e0128793. (doi:10.1371/journal.pone.0128793)
Bunker ME, Martin MO, Weiss SL. 2022 Recovered microbiome of an oviparous lizard differs across gut and reproductive tissues, cloacal swabs, and faeces. Mol. Ecol. Resour. 22, 1693–1705. (doi:10.1111/1755-0998.13573)
Fliegerova K et al. 2014 Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe 29, 80–84. (doi:10.1016/j.anaerobe.2013.09.015)
Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. 2016 obitools: a unix -inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182. (doi:10. 1111/1755-0998.12428)
Mercier C, Boyer F, Bonin A, Coissac E. 2013 SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. In Programs and abstracts of the SeqBio 2013 workshop. Abstract, pp. 27–29. Citesser.
Johnson JS et al. 2019 Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029. (doi:10.1038/s41467-019-13036-1) 85. Glassman SI, Martiny JBH. 2018 Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3, e00148-18. (doi:10. 1128/mSphere.00148-18)
Nearing JT, Douglas GM, Comeau AM, Langille MGI. 2018 Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ 6, e5364. (doi:10.7717/peerj.5364)
Caruso V, Song X, Asquith M, Karstens L. 2019 Performance of microbiome sequence inference methods in environments with varying biomass. mSystems 4, e00163-18. (doi:10. 1128/mSystems.00163-18)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012 The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. (doi:10.1093/nar/gks1219)
Zinger L, Lionnet C, Benoiston A, Donald J, Mercier C, Boyer F. 2021 metabaR: an r package for the evaluation and improvement of DNA metabarcoding data quality. Methods Ecol. Evol. 12, 586–592. (doi:10.1111/2041-210X.13552)
Bates D, Mächler M, Bolker B, Walker S. 2015 Fitting linear mixed-effects models using lme4. J. Stat. Soft 67, 1–48. (doi:10.18637/jss.v067.i01)
Schielzeth H. 2010 Simple means to improve the interpretability of regression coefficients: Interpretation of regression coefficients. Methods Ecol. Evol. 1, 103–113. (doi:10.1111/j. 2041-210X.2010.00012.x)
Burnham KP, Anderson DR, Huyvaert KP. 2011 AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. (doi:10.1007/s00265-010-1029-6)
Bartoń K. 2022 MuMIn: multi-model inference. R package version 1.46.0. See https://CRAN.R-project.org/package=MuMI.
Hill MO. 1973 Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432. (doi:10.2307/1934352)
Chao A, Chiu C-H, Jost L. 2014 Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324. (doi:10.1146/annurev-ecolsys-120213-091540)
Oksanen J. 2020 vegan: community ecology package. R package version 2.5-7.
Lin H, Peddada SD. 2020 Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. (doi:10.1038/s41467-020-17041-7)
Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJ, Letaw AD. 2014 Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430. (doi:10.1111/oik.01493)
Galliard JL, Ferrière Clobert J. 2003 Mother–offspring interactions affect natal dispersal in a lizard. Proc. R. Soc. Lond. B 270, 1163–1169. (doi:10.1098/rspb.2003.2360)
Fromm E et al. 2024 Data from: Warming effects on lizard gut microbiome depend on habitat connectivity. Dryad Digital Repository. (doi:10.5061/DRYAD.ZPC866TG1)
Fromm E et al. 2024 emmafromm/Warming-effects-on-lizard-gut-microbiome-depend-on-habitat-connectivity: Code for: Warming effects on lizard gut microbiome depend on habitat connectivity. Zenodo. (doi:10.5281/ZENODO.10829521)
Fromm E et al. 2024 Warming effects on lizard gut microbiome depend on habitat connectivity. Figshare. (doi:10.6084/m9.figshare.c.7165769)